小学数学知识点例题精讲《幻方(一)》教师版.pdf
《小学数学知识点例题精讲《幻方(一)》教师版.pdf》由会员分享,可在线阅读,更多相关《小学数学知识点例题精讲《幻方(一)》教师版.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、11.会用罗伯法填奇数阶幻方2.了解偶数阶幻方相关知识点3.深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方幻方起源于我国,古人还为它编撰了一些神话传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是 3 行,竖着数是 3 列,每块乌龟壳上都有几个点点,正好凑成 1 至 9 的数字,可是谁也弄不清这些小点点是什么意思一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献
2、给河神,说来也怪,河水果然从此不再泛滥了这个神奇的图案叫做“幻方”,由于它有 3 行 3 列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”“洛书”就是幻和为 15的三阶幻方如下图:987654321我国北周时期的数学家甄鸾在算数记遗里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆”幻方的种类还很多,这节课我们将学习认识了解它们二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一
3、性质的3 3的数阵称作三阶幻方,44的数阵称作四阶幻方,5 5的称作五阶幻方如图为三阶幻方、四阶幻方的标准式样,987654321 13414151612978105113216三、解决这幻方常用的方法适用于所有奇数阶幻方的填法有罗伯法口诀是:一居上行正中央,后数依次右上连上出框时往下填,右出框时往左填排重便在下格填,右上排重一个样 适用于三阶幻方的三大法则有:知识点拨知识点拨教学目标教学目标5-1-4-1.5-1-4-1.幻方(一)幻方(一)2求幻和:所有数的和行数(或列数)求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数幻和3角上的数=与它不同行、不同列、不同对角线的两数和2四、数
4、独数独简介:(日语:数独)是一种源自 18 世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏.如今数独的雏型首先于 1970 年代由美国的一家数学逻辑游戏杂志发表,当时名为Number Place.现今流行的数独于 1984 年由日本游戏杂志通信发表并得了现时的名称.数独本是“独立的数字”的省略,因为每一个方格都填上一个个位数.数独可以简单的数为:让行与列及单元格的数字成规律性变换的一类数字谜问题解题技巧:数独游戏中最常规的办法就是利用每一个空格所在的三个单元中已经出现的数字(大小数独一个空格只位于两个单元之内,但是同时多了一个大小关系作为限制条件)来缩小可选数字的范围.总结
5、 4 个小技巧:1、巧选突破口:数独中未知的空格数目很多,如何寻找突破口呢?首先我们要通过规则的限制来分析每一个空格的可选数字的个数,然后选择可选数字最少的方格开始,一般来说,我们会选择所在行、所在列和所在九宫格中已知数字比较多的方格开始,尽可能确定方格中的数字;而大小数独中已知的数字往往非常少,这个时候大小关系更加重要,我们除了利用已知数字之外更加需要考虑大小关系的限制.2、相对不确定法:有的时候我们不能确定 2 个方格中的数字,却可以确定同一单元其他方格中肯定不会出现什么数字,这个就是我们说的相对不确定法.举例说明,A1 可以填入 1 或者 2,A2 也可以填入1 或者 2,那么我们可以确
6、定,1 和 2 必定出现在 A1 和 A2 两者之中,A 行其他位置不可能出现 1 或者2.3、相对排除法:某一单元中出现好几个空格无法确定,但是我们可以通过比较这几个空格的可选数字进行对比分析来确定它们中的某一个或者几个空格.举例说明,A 行中已经确定 5 个数字,还有 4 个数字(我们假设是 1、2、3、4)没有填入,通过这 4 个空格所在的其他单元我们知道 A1 可以填入1、2、3、4,A2 可以填入 1、3,A3 可以填入 1、2、3,A4 可以填入 1、3,这个时候我们可以分析,数字 4 只能填入 A1 中,所以 A1 可以确定填入 4,我们就可以不用考虑 A1,这样就可以发现 2
7、只能填入A3 中,所以 A3 也能确定,A2 和 A4 可以通过其他办法进行确定.4、假设法:如果找不到能够确定的空格,我们不妨进行假设,当然,假设也是原则的,我们不能进行无意义的假设,假设的原则是:如果通过假设一个空格的数字,可以确定和这个空格处在同一个单元内的其它某一个或者某几个空格的数字,那么我们就以选择这样的空格来假设为佳.举例说明,B3 可以填入 1 或者 2,A3 可以填入 2 或者 3,B4 可以填入 1 或者 2,这个时候我们就应该假设 B3 填入 2,这样就可以确定 A3 填入 3,B4 填入 1,然后以这个为基础进行推理,如果推出违反规则的情况出现,那么这个假设就是错误的,
8、我们回到假设点重新开始.模块一、构造幻方【例例例例 1 1 1】3 3的正方形中,在每个格子里分别填入1 9的9个数字,要求每行每列及对角线上的三个数的和相等(请给出至少一种填法)【考点】构造幻方 【难度】1 星 【题型】填空【解析】方法一:第一步:求幻和:1239315()第二步:求中心数:我们把幻方中对角线交点的数叫“中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的 4 倍,即15460,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:604535()第三步:确定四个角上的数由于在同一条直线上
9、的三个数的和是 15,所以如果某格中的例题精讲例题精讲3数是奇数,那么与这个数在同一条直线上的另两个数的奇偶性相同,所以四个角上的数必为偶数第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,共8 解,下图为其中一解,其余解均可由其翻转或旋转得到:987654321方法二(对易法):南宋数学家杨辉概括为:“九子斜排,上下对易,左右相更,四维挺出”即:先把1到9九个数字按顺序斜着排列,再把上下的数字1和9对调,左右的数字7和3对调,最后把4个不在边上也不在最中心的数字拉到角上,一个三阶幻方就形成了789456123 729654183 381456927方法三(阶梯法)
10、:阶梯法也叫楼梯法,是法国数学家巴赫特创造的这个方法看起来有点像对易法,但又完全不一样,十分简单而巧妙,适用于所有奇数阶幻方这个方法把n阶方阵从四周向外扩展成阶梯状,然后把2n个自然数顺阶梯方向先码放好,再把方阵以外部分平移到方阵以内其对边部分去,即构成幻方下图表示了如何用阶梯法构成 3 阶幻方276951438方法二和方法三中将1 9按 8 个不同的方位排列就可以得到本题 8 个不同的解方法四(罗伯法):把1(或最小的数)放在第一行正中,按以下规律排列剩下的数:每一个数放在前一个数的右上一格;如果这个数所要放的格已经超出了最顶行,那么就把它放在最底行,仍然要放在右一列 如果这个数所要放的格已
11、经超出了最右列,那么就把它放在最左列,仍然要放在上一行 如果这个数所要放的格已经填好了其它的数,或者同时超出了最顶行和最右列,那么就把它放在前一个数的下面,具体如下图:1121231234123456123456712345678123456789这是法国人罗伯特总结出的方法,所以叫“罗伯法”罗伯法的口诀:一居上行正中央,后数依次右上连上出框时往下填,右出框时往左填排重便在下格填,右上排重一个样它对于构造连续自然数(以及能构成等差数列的数)幻方是最简单易行的,适用于所有奇数4阶幻方【答案】123456789【例例例例 2 2 2】3 3的正方形格子中,在每个格子里分别填入2 10的9个数字,要
12、求每行每列及对角线上的三个数的和相等(请给出至少一种填法)【考点】构造幻方 【难度】2 星 【题型】填空【解析】第一步:求幻和:234910318()第二步:求中心数:我们把幻方中对角线交点的数叫“中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的 4 倍,即18472,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:725436()第三步:确定四个角上的数:用尝试法,不难推知,四个角只能是奇数第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,共 8 解下图为其中一解,其
13、余解均可由其翻转或旋转得到:8910567234其他方法这里不再做介绍,同学们可以自己尝试练习【答案】8910567234【例例例例 3 3 3】用 11,13,15,17,19,21,23,25,27 编制成一个三阶幻方.【考点】构造幻方 【难度】2 星 【题型】填空【解析】方法一:给出的九个数形成一个等差数列,19 也是一个等差数列不难发现:中间方格里的数字应填等差数列的中间数,也就是第五个数,即应填 19;填在四个角上方格中的数是位于偶数项的数,即 13,17,21,25,而且对角两数的和相等,即13251721;余下各数就不难填写了(见下图)111723131925152127 与幻方
14、相反的问题是反幻方将九个数填入3 3(三行三列)的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方 方法二:用阶梯法,在三阶幻方的上下左右的中间添加一格,先将数字按从小到大的顺序,以斜行方向从左下向右上依次填写,再把添加格内的数填到本行(或本列)中相隔两行(或两列)的方格中5212313111927251517172311131519212527272521191513112317 方法三:对易法:九子斜排,上下对易,左右相更,四维挺出11272717271317131713171315192323191523191515192325112125
15、2125212521271111 方法四:用罗伯法的口诀:一居上行正中央,后数依次右上连上出框时往下填,右出框时往左填排重便在下格填,右上排重一个样【答案】111723131925152127【例例例例 4 4 4】如下图的3 3的阵列中填入了1 9的自然数,构成大家熟知的 3 阶幻方现在另有一个3 3 的阵列,请选择 9 个不同自然数填入 9 个方格中,使得其中最大者为 20,最小者大于 5,且要求横加、竖加、对角线方式相加的 3 个数之和都相等987654321【考点】构造幻方 【难度】3 星 【题型】填空【解析】观察原表中的各数是从 19 不同的九个自然数,其中最大的数是 9,最小的数是
16、 1,且横加、竖加、对角线方式相加结果相等根据题意,要求新制的幻方最大数为 20,而91120,因此,如果原表中的各数都增加 11,就能符合新表中的条件了如下图201918171615141312【答案】201918171615141312【例例例例 5 5 5】从 1、2、320 这 20 个数中选出 9 个不同的数放入 33 的方格表中,使得每行、每列、每条对角线上的三个数的和都相等.这个 9 个数中最多有_个质数.【考点】幻方性质 【难度】4 星 【题型】解答【关键词】走美杯,四年级,初赛,第 4 题【解析】6最多有 7 个质数【答案】7【例例例例 6 6 6】请你将1 25这二十五个自
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 幻方一 小学 数学 知识点 例题 教师版
限制150内