《高等数学上(修订版)(复旦出版社)习题四答案详解.pdf》由会员分享,可在线阅读,更多相关《高等数学上(修订版)(复旦出版社)习题四答案详解.pdf(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高等数学上(修订版)高等数学上(修订版)(复旦出版社)(复旦出版社)习题四答案详解习题四答案详解1.利用定义计算下列定积分:(1)bax dx (a b);i(ba),i 1,2,n1;nba,取i xi,i 1,2,n,记每个小区间xi1,xi长度为xin解:将区间a,bn 等分,分点为xi a则得和式nnf()x an(ba)iii1i1iba(ba)2n(n1)a(ba)2n2n由定积分定义得bax dx lim0i1n(ba)2n(n1)f(i)xi lima(ba)n2n21(b2a2).2(2)10exdx.i (i 1,2,n,n1),记每个小区间长度xi1,取n解:将区间0,1
2、 n 等分,分点为xii xi (i 1,2,n),则和式f(i)xiei1i11xnnin1ne)nni21nn11nne lim(e e 0e dx limnnnni11nnn1n1 e(1e)1 e(e1)lim11nnnn1enen11e(e1)1n lim e1.nn1n lim2.用定积分的几何意义求下列积分值:(1)2x dx;01解:由几何意义可知,该定积分的值等于由 x 轴、直线 x=1、y=2x 所围成的三角形的面积,故原式=1.(2)R0R2 x2dx(R 0).12 R.4e2解:由几何意义可知,该定积分的值等于以原点为圆心,半径为 R 的圆在第一象限内的面积,故原式=
3、3.证明下列不等式:(1)e e lnxdx 2(e2e);e2证明:当e x e时,lne ln x lne2,即1 ln x e.由积分的保序性知:2(2)1e2e2dx lnxdx 2dxeee2e2即e e e2eln xdx 2(e2e).10exdx e.22证明:当0 x 1.时,1 ex e,由积分的保序性知:即110dx exdx edx0012110exdx e.24.证明:(1)lim12n0 xndx 0;1 x1xn证明:当0 x 时,0 xn,21 x于是0而lim1201xn112xndx()n1,0n121 x11()n1 0,nn1212由夹逼准则知:n0li
4、mxndx 0.1 x(2)lim4n0sinnxdx 0.证明:由中值定理得40sin4xdx sinn(0)sinn,其中0,4444故n0limsinnxdx limsinn 0 (0 sin1).n445.计算下列定积分:(1)3xdx;解:原式22x3342382 3.3(2)x2 xdx;1解:原式01(x2 x)dx(x x2)dx(x2 x)dx0101212111111x3x2x2x3x3x221 230321351511.6666x,0 x,2f(x)dx,其中f(x)sin x,x ;220(3)0解:原式1xdxsin xdx x22220cosx221.8(4)max
5、1,x2dx;22解:原式2012x2dxdx11212011x2dx x32x3.3231312(5)1sin2x dx.解:原式20sin xcosxdx(cosxsin x)dx(sin xcosx)dx4024(sin xcosx)6.计算下列导数:402(cosxsin x)4 2(2 1).dx2(1)1t2dtdx0解:原式 2x 1 x4.dx3dt(2)2dxx1t4dx3dtdx2dt3x22x解:原式.128dx01t4dx01t41 x1 xx tsinu2du0dy7.求由参数式所确定的函数 y 对 x 的导数.tdxy cosu2du0dydydtcost2解:co
6、tt2.2dxdxsintdt8.求由方程y0etdt costdt 0所确定的隐函数y y(x)的导数.0 x解:方程两边对 x 求导,有ey ycosx 0又e 1sin x故y ycos x.sin x19.利用定积分概念求下列极限:11(1)limn n1n21 2n11111dx ln(1 x)0 ln2.n 01 n1 xn 11解:原式 lim12n11nn(2)lim1(n 2n nn2n2).12n 1232.xdx.x0n3n 30112解:原式 limnnn10.求下列极限:(1)limx0 x0ln(12t2)dtx3;1ln(12x2)2222x2解:原式 limli
7、mln(12x).x03x33x03xet2dt(2)lim0 x2.x02ttedt02解:原式 limx02etdtex0 x22xe2x2 2limx0 x0etdt22xex 2lim1 2.x012x2x1t211.a,b,c 取何实数值才能使limdt c成立.2x0sin xaxb1t解:因为x 0时,sin x ax 0而该极限又存在,故 b=0.用洛必达法则,有a 1,0,x21x2lim lim2x2x0cosxax0cosxalim 2,a 1.1 xx0sin x所以a 1,b 0,c 2或a 1,b 0,c 0.12.利用基本积分公式及性质求下列积分:(1)x(x25
8、)dx;3271022x c.解:原式x dx5x dx x 735212(2)3xexdx;(3e)x解:原式=(3e)dx c.ln(3e)x23(3)21 x21 x解:原式=3dx;11dx21 x21 x2dx 3arctan x2arcsin xc.x2(4)dx;1 x21 x21dxdx dx解:原式=1 x2 xarcsin xc.1 x2xdx;21cosxx1dx sin xc.解:原式=222(5)sin21(6)12x xdx;x 147解:原式=x dxxdx x44x4c.73454(7)dx;2x解:原式=x dx 21c.x(8)x xdx;25解:原式=x
9、dx x2c.5(9)dxx232x52;22解:原式=xdx x3c.3(10)(x23x 2)dx;解:原式=1332x x 2xc.323x43x21(11)dx;x21解:原式=3x dx213x21dx x arctan xc.3(12)2exdx;x解:原式=2e 3ln xc.xex(13)e1dx;x x解:原式=e dxx1dx ex2 x c.x23x52x(14)dx;x35 2 2c.解:原式=2dx5dx 2x2 3ln 33(15)sec x(sec xtan x)dx;2解:原式=sec xdx sec xtan xdx tan xsec xc.xx1dx;1co
10、s2x1112dx sec xdx tan xc.解:原式=2cos2x22cos2x(17)dx;cosxsin x(16)解:原式=(cos xsin x)dx sin xcos xc.cos2xdx.cos2xsin2x11dx解:原式=cos2xdx cot xtan xc.sin2x(18)13.一平面曲线过点(1,0),且曲线上任一点(x,y)处的切线斜率为 2x2,求该曲线方程.解:依题意知:y 2x2两边积分,有y x 2xc又 x=1 时,y=0 代入上式得 c=1,故所求曲线方程为y x 2x1.14.(略).15.利用换元法求下列积分:22(1)xcos(x2)dx;解:
11、原式=11222cos x dx sin x c.22(2)sin xcosxdx;3sin xcosx1323解:原式=(sin xcosx)d(sin xcosx)(sin xcosx)3c.2(3)dx;2x21解:原式=11 111dx lnln2x1c2x122x12x12 22 212 2ln2x1c.2x1(4)cos3xdx;解:原式=(1sin x)dsin x sin xsin xc.2133x(5)cos xcos dx;2解:原式=113x3xdx sinxsinc.cosxcos2 32222(6)sin 2xcos3xdx;解:原式=111(sin5xsin x)d
12、x cos xcos5xc.2210(7)102arccosx1 x2dx;解:原式=112arccos x2arccos x10d(2arccos x)10c.22ln10(8)1ln xdx;2(xln x)解:原式=(xln x)d(xln x)21c.xln x(9)arctanxdx;x(1 x)解:原式=2arctanxd(arctanx)(arctanx)2c.(10)lntan xdx;cosxsin x解:原式=lntan xd(ln tan x)1(lntan x)2c.2(11)e5xdx;15xc.5dx(12);12x1解:原式=ln12xc.2解:原式=e(13)s
13、intdt;t解:原式=2sintd t 2cost c.(14)tan10 xsec2xdx;解:原式=tanxd(tan x)101tan11xc.10(15)dx;xln2x解:原式=(ln x)d(ln x)21c.ln x2(16)tan 1 x2x1 xdx;2解:原式=tan 1 x d(1 x)lncos 1 x2c.2dx;sin xcos xdxdtan x lntan xc.解:原式=2tan xcos xtan x(17)(18)xexdx;解:原式=21x21x22ed(x)ec.22(19)(x 4)10dx;解:原式=1(x4)11c.113(20)dx;23x1
14、211解:原式=(23x)3d(2 3x)(23x)3c.32(21)1 x94x2dx;1解:原式=111212(94x)2d(94x2)arcsinx94x2c.2dx 32122823 3x(22)a xa xdx;dx解:原式=a xa2 x2dx a a1(a2 x2)12d(a2 x2)1x22 a aarcsinxaa2 x2c.(23)dxexex;d(ex解:原式=)1(ex)2 arctanexc.(24)ln xxdx;解:原式=ln xd(ln x)12(ln x)2c.(25)sin2xcos3xdx;解:原式=sin2x(1sin2x)d(sinx)13sin3x1
15、5sin5xc.(26)dxx4x21;解:原式令xtantsectcos3t1sin2ttan4tdt sin4tdt sin4td(sint)13sin3t1sintc,又cost 11 x2,sin t x1 x24(2x21)1 x2故上式c.33x(27)dx;12x令 2xt解:原式t1tdt t ln|1t|c 2x ln(12x)c.(28)解:原式x29dx;x3tan2tdt 3(sec2t 1)dt 3tan t 3t c,2令x3sect123 xx 9,t arccos,又tant 1 3x 3故上式=x 9 3arccos23c.x(29)dx(x 1)23;解:原
16、式令xtantsec2tsec3tdt costdt sint c,又sect 1 x2,所以sint x1 x2,故上式x1 xdx2c.(30)解:原式x 1 x2.令xsintcostsint costdtsintsint costdt+=t+c1=ln|sint+cost|+c2故costt1dt sint cost22lnsint costc11arcsin xlnx 1 x2c.2216.用分部积分法求下列不定积分:(1)x2sin xdx;222解:原式=x dcos x x cos x 2 cos xxdx x cos x 2 xdsin x x2cos x2xsin x2co
17、s xc.(2)xexdx;xxxxx解:原式=xde xe e dx xeec.(3)xln xdx;解:原式=112112122ln xdx x ln xxdx x ln xx c.22224(4)x2arctan xdx;1131x33dx解:原式=arctan xdx x arctan x2333 1 x1311x arctan xx2ln(1 x2)c.366(5)arccos xdx;解:原式=xarccosxx1 x2dx xarccosx 1 x2c.(6)xtan2xdx;解:原式=x(sec x1)dx xdtan x2121x xtan xtan xdxx222 xtan
18、 xlncosx(7)excos xdx;12x c.2xxxx解:ecos xdx e dsin x esin x esin xdx exsin xexdcos x exsin xexcos xexcos xdx原式=1xe(sin xcos x)c.2(8)xsin xcos xdx;解:原式=1111xsin2xdx xdcos2x xcos2xcos2xdx244411 xcos2xsin2xc.48(ln x)3(9)dx;2x解:原式=(ln x)3d1 132 1(ln x)3(ln x)dx x x13 1(ln x)3(ln x)26ln xdxx x1366(ln x)3(
19、ln x)2ln xc.xxxx(10)x2a2dx.解:原式xatanta2sec3tdt.3又sec tdt sect(tan2t 1)dt tantd(sect)sectdt tantsect sec3tdt lnsect tant所以故11tantsect lnsect tantc2211x2a2dx x x2a2lnxx2a2c.223sectdt 17.求下列不定积分:x21(1)dx;2(x1)(x1)11dx 11lnx11lnx1c解:原式=122x1222(x1)(x1)(x1)11lnx21c.x123dx(2)3;x 1解:原式=111x2 12dx lnlndxx1x
20、 x1 x1x2 x122x2 x1 lnx1x2 x132x1arctanc.33x5 x48(3)dx;x3 x解:原式=x2 x1843 dxxx1x11312x x x8lnx4lnx13lnx1c.32x2(4)6dx;x 11d(x3)13解:原式=arctanx c.3 23 1(x)3sin xdx;1sin xsin x122dx tan xdx (sec x1)dx secxtan x xc.解:原式=2cos xcos xcot x(6)dx;sin xcosx1(5)21t2xdt令ttan2211t21 1121t1tdt dt 解:原式2t 2t1t22t(t 1)
21、2t2dt11t21t21t2111xx1lntt c ln tantanc.222222(7)1dx;x(1 x)解:原式=211(x)2d(x)2ln(x 1 x)c.(8)x11dx;x11解:原式=122 x1dx x2ln x2x1dxxxxx1令dxxx1t又2t2142dt 4t 42dtt 1t 1 4t 2lnt 1c 4 x12lnt 1x11cx11故原式=x4 x14ln(x11)c.18.求下列不定积分,并用求导方法验证其结果正确否:(1)dx;1exexdx1x 1x解:原式=xde xln(1e)c.xxxe(1e)e1e ex1.验证:(xln(1e)c)1xx
22、1e1ex所以,结论成立.(2)ln(x 1 x2)dx;解:原式=xln(x 1 x)2x1 x2dx xln(x 1 x2)1 x2c.22验证:xln(x 1 x)1 x c ln(x 1 x)x211 x22x2 1 x2ln(x 1 x2).所以,结论成立.(3)ln(1 x2)dx;x2dx xln(1 x2)2x2arctan xc.解:原式=xln(1 x)221 x22验证:xln(1 x)2x2arctan xc ln(1 x)x22x22 ln(1 x2).221 x1 x所以,结论正确.(4)54x x2dx;解:原式=9x2132(x2)2d(x2)arcsin(x2
23、)54x x2c.232x2192验证:arcsin(x2)54x x3229211142x54x x2(x2)222 54x x2x232139(x2)2154x x254x x2.21所以,结论正确.2 54x x2(5)sin(ln x)dx;解:1sin(ln x)dx xsin(ln x)xcos(ln x)dxx xsin(ln x)xcos(ln x)sin(ln x)dx所以,原式=xsin(ln x)cos(ln x)c.2x验证:sin(lnx)cos(lnx)c21x11sin(ln x)cos(ln x)cos(ln x)sin(ln x)22xx sin(ln x).
24、故结论成立.xex(6)xdx;2(e 1)x1xex1解:原式=xdxxdx xdx xxe 1e 1e 11ee 1xxln(1e)c.xe 1xxexxex x(e 1)xex验证:x.ln(1e)c(ex1)21ex(ex1)2e 1故结论成立.(7)ln xdx;(1 x2)3/2解:原式=ln xdxlnxx1xlnx2dx ln(x 1 x)c.222x21 x1 x1 x 1 x x xln x2ln(x 1 x)c验证:2 1 x22 1 x1 x2x 1 x2(1ln x)(1 x2)x2ln x1ln x.2 3/22 3/22(1 x)(1 x)1 x(1ln x)1
25、x2 xlnx2x2 1 x212x所以,结论成立.xsin xdx;1cos xxdcos xx解:原式=dxxdtanln(1cosx)x1cosx22cos22(8)xx xtantandxln(1cosx)22x xtanln(1cosx)ln(1cosx)c2x xtanc2验证:(xtanxxx 1sin xxxsin xc)tan xsec2xx222 22cos21cosx2cos222所以,原式成立.(9)xf(x)dx;解:原式=xdf(x)xf(x)f(x)dx xf(x)f(x)c.验证:xf(x)f(x)c f(x)xf(x)f(x)xf(x).故结论成立.(10)s
26、innxdx(n1,且为正整数).nn1解:Insin xdx sinxdcos x cosxsinn1x(n1)cos2xsinn2xdx cosxsinn1x(n1)sinn2xdx(n1)sinnxdx cosxsinn1x(n1)In2(n1)In故In 1n1cosxsinn1xIn2.nnn11n1n2验证:cos xsinxsinxdxnn1n1n1n2sin xcosx(n1)sinn2xcosxsinxnnn1n1n1n2sinnx(1sin2x)sinn2xsinxnnn sinnx.故结论成立.19.求不定积分max(1,x)dx.x,x 1解:max(1,x)1,1 x
27、 1x,x 1 122x c1,x 1故原式=xc2,1 x 11x2c3,x 12又由函数的连续性,可知:c21c1,c31c1,c1 c2 12x 12x c,1所以max(1,x)dx xc,1 x 1212x 1c,x 1220.计算下列积分:(1)40 x2dx;2x1解:原式t 2x1123dt 133 22.t t t12 13 22633(2)e21dx;x 1ln x解:原式=e21(1lnx)d(1lnx)2 1lnxdx;12e2 2(31).1(3)31x21 x21 d113x2 11解:原式=21x2112x32 123.3(4)40sin xdx;1sin x解:
28、原式=40sin(1sin x)sin x4dx dx4tan2xdx220cos x0cos x1tan x x2 2.cosx04(5)ln3ln24dx;exexln3ln2解:原式=dex1ex113lnln.x2x(e)12e 1ln222ln3(6)01cos2xdx;解:原式=02cos xdx 2cosxdx 2cosxdx2cosxdx02202202sin x2sin x2 2 2.(7)0sin3xsin5xdx;解:原式=0sin xcosxdx sin xdsin xsin xdsin x252232032324225sin xsin2x.55502(8)x3ln x
29、dx;121212151解:原式=ln xdx4x4ln x x3dx 4ln 2.41411641(9)e2xcos xdx;202解:20e2xcosxdx e2xdsin x e2xsin x202x20202e2xsin xdx2x2020 e 2e dcos x e 2ecosx所以,原式=(e 2).4e2xcosxdx2015(10)ln(1 x)dx;0(2 x)211111ln(1 x)解:原式=ln(1 x)ddx002 x2 x 1 x2 x011 ln21111 dx03 2 x1 x11111 ln2ln(2 x)ln(1 x)ln233300(11)32dx;x2
30、x2331 11x111解:原式=dx ln ln2ln5.23 x133x2x22(12)21xdx;3x(x x)3解:原式=令t6x62162161 dt 6dt1t(t 1)tt 1 6lnt ln(t 1)1 7ln 26ln62 1(13)sinxdx;3362解:原式 cosx 033(14)tedt;01t22解:原式=e01t22t d e2 2t2211e0(15)cos2udu.11 13.(1cos2u)du u sin2u268 24626226解:原式=21.计算下列积分(n 为正整数):(1)1xn1 x20dx;解:令x sint,dx costdt,当 x=0
31、 时 t=0,当 x=1 时 t=,2sinntcost dt 2sinnt dt0cost1xn1 x20dx 20由第四章第五节例 8 知10n1 n3xn nn2dx 21 xn1n3nn23 1,n为偶数,4 2 24 2,n为奇数.5 3(2)40tan2nx dx.解:Intan40402(n1)xtan xdx tan2402(n1)xsec xdxtan2(n1)xdx240tan2(n1)xdtan x In1由递推公式In In11 In12n112n1n11可得In(1)(143522.证明下列等式:a(1)n1).2n11a2(1)x f(x)dx xf(x)dx(a
32、为正常数);02021a21a2令x2t1a22tf(t)dt xf(x)dx 右证明:左x f(x)d(x)20202032所以,等式成立.(2)若f(x)ca,b,则20f(sin x)dx f(cos x)dx.20证明:左令x t202f(cost)(dt)f(cost)dt f(cosx)dx.2020所以,等式成立.23.利用被积函数奇偶性计算下列积分值(其中a 为正常数)(1)sin xa|x|dx;a解:因sin x为a,a上的奇函数,|x|故sin xa|x|dx 0.a(2)ln(x 1 x2)dx;a22解:因为ln(x 1(x)ln(x 1 x)即被积函数为奇函数,所以
33、原式=0.a(3)1212sin xtan2xln(1 x)3cos3xdx;sin xtan2x解:因为为奇函数,故3cos3x121212121212原式=0ln(1 x)dx xln(1 x)12xdx1 x31ln3 ln2xln(1 x)ln3 ln21.12223 x(4)sin2xsin4xlndx.3 x解:因为ln223 x是奇函数,故3 x22原式=5 3 1 5sin xdx 2sin6xdx 26 4 2 21662024.利用习题 22(2)证明:20sin xcosxdx 2dx,0sin xcosxsin xcosx4并由此计算adxxa x220(a 为正常数)
34、证明:由习题 22(2)可知又故等式成立.20sin xcosxdx 2dx0sin xcosxsin xcosx20sin xcosxdx2dx 2dx.0sin xcosx0sin xcosx2adxxa2 x2令xasint020cosxdt.sint cost42112f(2),f(2)0,f(x)dx 125.已知,求x f(2x)dx.00211111解:原式=x2df(2x)x2f(2x)2xf(2x)dx202020111111f(2)xdf(2x)0 xf(2x)f(2x)dx2202020111121 f(2)f(2x)d(2x)1f(t)dt 14 024040426.用
35、定义判断下列广义积分的敛散性,若收敛,则求其值:11(1)211sindx;2xxbb21 11解:原式=lim2sind lim cosbx xbx(2)1 lim cos1.bbdx;x22x200d(x1)d(x1)解:原式=arctan(x1)(x1)210(x1)21arctan(x1)0.4224(3)0 xnexdx(n 为正整数)解:原式=0 x denx x enx0n0 xn1exdx 0n(4)a0 xe dx n1 x n!exdx n!0dxa x220(a 0);解:原式=lim0ea0 x lim arcsina0a2 x202dxa lim arcsin1.0a
36、2(5)dxx 1(lnx)1;解:原式=lim0ed(ln x)1(lnx)21arcsin(lnx)lim0e1 lim arcsin.ln(e)02(6)10dx.x(1 x)解:原式=1201dxdx1x(1 x)2x(1 x)12 2 lim10d x1(x)21212lim12012d x1(x)212122arcsinx 2lim011arcsinx2lim02 22.4 24 27.讨论下列广义积分的敛散性:(1)2dx;kx(ln x)ln(lnx),k 1211kd(lnx),k 1(lnx)2解:原式=1kk2(lnx)1k1(ln2),k 1(lnx)1k2k 11k故
37、该广义积分当k 1时收敛;k 1时发散.(2)badx(b a).(b x)kk 1发散,b11k1klim(b x)(ba)ba1k0k,k 1(b x)d(b x)解:原式=lima1k0b lim发散,k 1ln(b x)a0综上所述,当 k1 时,该广义积分收敛,否则发散.sin xdx,求:0 x2sin xcosx(1)dx;0 x1sin(2x)1sintd(2x)dt.解:(1)原式=202x20t428.已知(2)解:0sin2xdx.2x01cos2xsin2xdx dx220 x2x1cos2xdx02x2dx02x2111dxcos2xd02x220 x11111dxc
38、os2x0dcos2x02x202x2xsin2x111cos2xd2x02x2x2x0 0.2229.已知c,2p(x)dx 1,其中p(x)1 x0,11x1,x1,求 c.解:p(x)dx 0dxc1 x121dx0dx 11c1 x0121dx所以c 0c1 x21dxc1 x20dx carcsin xcarcsin x1 c 101.30.证明:无穷积分敛散性的比较判别法的极限形式,即节第六节定理2.证明:如果lim|f(x)|0,那么对于(使 0),存在 x0,当x x0时xg(x)|f(x)|g(x)0 即()g(x)|f(x)|()g(x)成立,显然ag(x)dx与|f(x)
39、|dx同进收敛或发散.a如果 0,则有|f(x)|g(x),显然ag(x)dx收敛,则|f(x)|dx亦收敛.a如果,则有|f(x)|()g(x),显然*31.计算下列广义积分的柯西主值:ag(x)dx发散,则|f(x)|dx亦发散.a(1)V.P.x1 x2dx;0 xAxdxdx解:原式=lim220AA1 x1 xA0 lim1 x21 x20AA22 0.lim 1 A 11 1 AA(2)V.P.122dx;xln xdx lnln x limxln x0121dx解:原式=lim102xln x112lnln x121 lim lnln(1)lnlnln2lnln(1)ln 0.02(3)V.P.0dx;2x 3x22bdxdxdx1222012x 3x2x 3x2x 3x2解:x=1,x=2 是奇点.故原式 lim0n0bx2 x2 x2 lim ln lim ln limx1x1lnx100001b20b211 lim lnln2 lim lnln lim lnln10b1001b01 ln2 ln.2(4)V.P.dx.01 x312b3dx 1dx lim解:原式=limln1 x01001 x1 x limlnln2ln ln2.010ln1 x13
限制150内