第三章控制系统的时域分析PPT讲稿.ppt
《第三章控制系统的时域分析PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《第三章控制系统的时域分析PPT讲稿.ppt(44页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三章 控制系统的时域分析第1页,共44页,编辑于2022年,星期二 第三章第三章 控制系统的时域分析法控制系统的时域分析法 第一节 二阶系统的瞬态响应及性能指标 第二节 增加零极点对二阶系统响应的影响第三节 反馈控制系统的稳态误差第四节 劳斯-霍尔维茨稳定性判据 第2页,共44页,编辑于2022年,星期二 第一节第一节 二阶系统的瞬态响应及性能指标二阶系统的瞬态响应及性能指标 瞬态响应,是指系统的输出从输入信号r(t)作用时刻起,到稳定状态为止,随时间变化的过程。分析系统的瞬态响应,可以考查系统的稳定性和过渡过程的性能。分析系统的瞬态响应,有以下方法:1.直接求解法 2.间接评价法 3.计算
2、机仿真法 本小节首先讨论典型输入信号、性能指标等内容,然后讨论一阶、二阶系统的瞬态响应,最后讨论如何处理高阶系统的瞬态响应问题。第3页,共44页,编辑于2022年,星期二 一、一、典型输入信号典型输入信号(一)阶跃信号(一)阶跃信号 阶跃信号的表达式为:(3.1)当A=1时,则称为单位阶跃信号,常用1(t)表示,如图3-1所示。图3-1 阶跃信号 图3-2 斜坡信号 第4页,共44页,编辑于2022年,星期二 (二)斜坡信号(二)斜坡信号 斜坡信号在t=0时为零,并随时间线性增加,所以也叫等 速度信号。它等于阶跃信号对时间的积分,而它对时间的导数就是阶跃信号。斜坡信号的表达式为:(3.2)第5
3、页,共44页,编辑于2022年,星期二(三)抛物线信号三)抛物线信号 抛物线信号也叫等加速度信号,它可以通过对斜坡信号的积分而得。抛物线信号的表达式为:(3.3)当A=1时,则称为单位抛物线信号,如图3-3所示 第6页,共44页,编辑于2022年,星期二(四)脉冲信号(四)脉冲信号 单位脉冲信号的表达式为:(3.4)其图形如图3-4所示。是一宽度为e,高度为1e 的矩形脉冲,当e 趋于零时就得理想的单位脉冲信号(亦称d(t)函数)。(3.5)第7页,共44页,编辑于2022年,星期二(五)正弦信号(五)正弦信号 正弦信号的表达式为:(3.6)其中A为幅值,w=2p/T为角频率。图3-5 正弦信
4、号 第8页,共44页,编辑于2022年,星期二二、二、系统的性能指标系统的性能指标系统的瞬态性能通常以系统在初始条件为零的情况下,对单位阶跃输入信号的响应特性来衡量,如图3-6所示。这时瞬态响应的性能指标有:1 1。最大超调量sp响应曲线偏离稳态值的最大值,常以百分比表示,即 最大百分比超调量sp最大超调量说明系统的相对稳定性。2。延滞时间td响应曲线到达稳态值50%所需的时间,称为延滞时间。第9页,共44页,编辑于2022年,星期二3.上升时间tr它有几种定义:(1)响应曲线从稳态值的10%到90%所需时间;(2)响应曲线从稳态值的5%到95%所需时间;(3)响应曲线从零开始至第一次到达稳态
5、值所需的时间。一般对有振荡的系统常用“(3)”,对无振荡的系统常用“(1)”。4.峰值时间tp响应曲线到达第一个峰值所需的时间,定义为峰值时间。5.调整时间ts响应曲线从零开始到进入稳态值的95%105%(或98%102%)误差带时所需要的时间,定义为调整时间。第10页,共44页,编辑于2022年,星期二图图3-6 单位阶跃响应单位阶跃响应第11页,共44页,编辑于2022年,星期二 对于恒值控制系统,它的主要任务是维持恒值输出,扰动输入为主要输入,所以常以系统对单位扰动输入信号时的响应特性来衡量瞬态性能。这时参考输入不变、输出的希望值不变,响应曲线围绕原来工作状态上下波动,如图3-7所示。第
6、12页,共44页,编辑于2022年,星期二 可用一阶微分方程描述其动态过程的系统,称为一阶系统。考虑如图3-8所示的一阶系统,它代表一个电机的速度控制系统,其中t 是电机的时间常数。该一阶系统的闭环传递函数为 (3.7)三、瞬态响应分析三、瞬态响应分析 (一)一阶系统的瞬态响应图3-8 一阶控制系统 第13页,共44页,编辑于2022年,星期二 当系统输入为单位阶跃信号时,即r(t)=1(t)或R(s)=1/s,输出响应的拉氏变换为 (3.8)取C(s)的拉氏反变换,可得一阶系统的单位阶跃响应为 (3.9)系统响应如图3-9所示。从图中看出,响应的稳态值为 (3.10)第14页,共44页,编辑
7、于2022年,星期二图3-9 一阶系统的单位阶跃响应第15页,共44页,编辑于2022年,星期二 若增加放大器增益K,可使稳态值近似为1。实际上,由于放大器的内部噪声随增益的增加而增大,K不可能为无穷大。而且,线性模型也仅在工作点附近的一定范围内成立。所以,系统的稳态误差 (3.11)不可能为零。系统的时间常数为 (3.12)它可定义为系统响应达到稳态值的63.2%所需要的时间。第16页,共44页,编辑于2022年,星期二由式(3.9),很容易找到系统输出值与时间常数T的对应关系:从中可以看出,响应曲线在经过3T(5%误差)或4T(2%误差)的时间后进入稳态。t=T,c(1T)=0.632 c
8、()t=2T,c(2T)=0.865c()t=3T,c(3T)=0.950c()t=4T,c(4T)=0.982c()第17页,共44页,编辑于2022年,星期二 如果系统响应曲线以初始速率继续增加,如图3-9中 的c1(t)所示,T还可定义为c1(t)曲线达到稳态值所需要 的时间。(3.13)因此当t=T时,c1(t)曲线到达稳态值,即,所以第18页,共44页,编辑于2022年,星期二(二)二阶系统的阶跃响应(二)二阶系统的阶跃响应 在工程实际中,三阶或三阶以以上的系统,常可以近似或降阶为二阶系统处理。图3-10是典型二阶系统的结构图,它的闭环传递函数为 由上式可看出,z 和wn是决定 二阶
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三章 控制系统的时域分析PPT讲稿 第三 控制系统 时域 分析 PPT 讲稿
限制150内