《第2章检测技术理论基础PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《第2章检测技术理论基础PPT讲稿.ppt(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第2章检测技术理论基础第1页,共47页,编辑于2022年,星期一nIT技术n信息采集、信息传输、信息处理n信息产业三大支柱n传感器技术、通信技术、计算机技术n什么是传感器?n形形色色的传感器传感器的地位和作用第2页,共47页,编辑于2022年,星期一课程安排n课程安排n讲 课 30 学时n习题课 4 学时n实验课 8 学时n总 计 42 学时第3页,共47页,编辑于2022年,星期一2.1 测量概论测量概论2.2 测量数据的估计和处理测量数据的估计和处理第2章 检测技术的理论基础第4页,共47页,编辑于2022年,星期一2.1.1测量n测量是以确定被测量的值或获取测量结果为目的的一系列操作。n
2、测量也就是将被测量与同种性质的标准量进行比较,确定被测量对标准量的倍数。或式中:x被测量值u标准量,即测量单位n比值(纯数),含有测量误差第5页,共47页,编辑于2022年,星期一2.1.2测量方法n根据获得测量值的方法分为n直接测量:直接测量:电流表测电流、弹簧秤称称重量n间接测量:间接测量:测水塔的水量、曹冲称象n组合测量:组合测量:若干个被测量及测量量的情况n根据测量方式分为n偏差式测量:偏差式测量:用仪表指针的位移(即偏差)决定被测量的量值。模拟电流/压表、体重秤等。n零位式测量:零位式测量:指零仪表指零时,被测量与已知标准量相等。天平、电位差计等。n微差式测量:微差式测量:将被测量与
3、已知的标准量相比较,取得差值后,再用偏差法测得此差值。游标卡尺等。第6页,共47页,编辑于2022年,星期一2.1.2测量方法n根据测量条件分为n等精度测量:等精度测量:用相同仪表与测量方法对同一被测量进行多次重复测量n不等精度测量:不等精度测量:用不同精度的仪表或不同的测量方法,或在环境条件相差很大时对同一被测量进行多次重复测量n根据被测量变化的快慢分为n静态测量n动态测量第7页,共47页,编辑于2022年,星期一2.1.3测量误差测量误差是测得值减去被测量的真值。n误差的表示方法n绝对误差n相对误差n引用误差n基本误差n附加误差n测量误差的性质n随机误差n系统误差n粗大误差第8页,共47页
4、,编辑于2022年,星期一误差的表示方法(1)n(1)绝对误差 绝对误差可用下式定义:=x-L 式中:绝对误差;x测量值;L真值。采用绝对误差表示测量误差,不能很好说明测量质量的好坏。例如,在温度测量时,绝对误差=1,对体温测量来说是不允许的,而对测量钢水温度来说却是一个极好的测量结果。第9页,共47页,编辑于2022年,星期一误差的表示方法(2)n(2)相对误差 相对误差可用下式定义:式中:相对误差,一般用百分数给出;绝对误差;L真值。标称相对误差:第10页,共47页,编辑于2022年,星期一n(3)引用误差 引用误差可用下式定义:引用误差是仪表中通用的一种误差表示方法。n(4)基本误差n仪
5、表在规定的标准条件下所具有的误差。n(5)附加误差n仪表的使用条件偏离额定条件下出现的误差。误差的表示方法(3)第11页,共47页,编辑于2022年,星期一测量误差的性质(1)n(1)随机误差n对同一被测量进行多次重复测量时,绝对值和符号不可预知地随机变化,但就误差的总体而言,具有一定的统计规律性的误差称为随机误差。引起的原因?n(2)系统误差n对同一被测量进行多次重复测量时,如果误差按照一定的规律出现,则把这种误差称为系统误差。例如,标准量值的不准确及仪表刻度的不准确而引起的误差。引起的原因?n(3)粗大误差n明显偏离测量结果的误差。引起的原因?第12页,共47页,编辑于2022年,星期一测
6、量误差的性质(2)60kg50kg0kg系统误差随机误差粗大误差第13页,共47页,编辑于2022年,星期一n例例1-1 某电压表的精度等级S为1.5级,试算出它在0V100V量程的最大绝对误差。解:电压表的量程是:xm=100V0V=100V 精度等级S=1.5 即引用误差为:1.5 可求得最大绝对误差:m=xm =100V(1.5)=1.5V 故:该电压表在0V100V量程的最大绝对误差是1.5V。第14页,共47页,编辑于2022年,星期一n 例例1-2 某1.0级电流表,满度值xm=100uA,求测量值分 别为x1=100uA,x2=80uA,x3=20uA时的绝对误差和示值相对误差。
7、n解:精度等级S=1.0n 即引用误差为:1.0n 可求得最大绝对误差:m=xm=100uA(1.0)=1.0uAn 依据误差的整量化误差的整量化原则:认为仪器在同一量程各示值处的绝对误差是常数,且等于m。n(注意:1.通常,测量仪器在同一量程不同示值处的绝对误差实际上未必处处相等,但对使用者来讲,在没有修正值可以利用的情况下,只能按最坏情况处理按最坏情况处理,于是就有了误差的整量化误差的整量化处理原则。2.因此,为减小测量中的示值误差,在进行量程选择时应尽可能使示值接近满度值使示值接近满度值,一般示值不小于满度值的2/3。)n 故:三个测量值处的绝对误差分别为:x1=x2=x3=m=1.0u
8、An 三个测量值处的示值(标称)相对误差分别为:第15页,共47页,编辑于2022年,星期一例例1-3 要测量100的温度,现有0.5级、测量范围0300 和1.0级、测量范围0100 的两种温度计,试分析各自产生的示值误差。问选用哪一个温度计更合适?解:对0.5级温度计,可能产生的最大绝对值误差为:按照误差整量化原则误差整量化原则,认为该量程内的绝对误差为:所以示值相对误差为:对1.0级温度计,可能产生的最大绝对值误差为:按照误差整量化原则误差整量化原则,认为该量程内的绝对误差为:所以示值相对误差为:结论:结论:用1.0级小量程的温度计测量所产生的示值相对误差反而比选用0.5级的较大量程的温
9、度计测量所产生的示值相对误差小,因此选用1.0级小量程的温度计更合适。第16页,共47页,编辑于2022年,星期一1.2测量数据的估计和处理n1.2.1随机误差的统计处理n1.2.2系统误差的通用处理方法n1.2.3粗大误差n1.2.4测量数据处理中的几个问题第17页,共47页,编辑于2022年,星期一随机误差的统计处理n正态分布n随机误差具有以下特征:绝对值相等的正误差与负误差出现的次数大致相等对称性。在一定测量条件下的有限测量值中,其随机误差的绝对值不会超过一定的界限有界性。绝对值小的误差出现的次数比绝对值大的误差出现的次数多单峰性 对同一量值进行多次测量,其误差的算术平均值随着测量次数n
10、的增加趋向于零抵偿性。(凡是具有抵偿性的误差原则上可以按随机误差来处理)这种误差的特征符合正态分布 第18页,共47页,编辑于2022年,星期一随机误差的统计处理n随机误差的数字特征n算术平均值。对被测量进行等精度的n次测量,,得n个测量值x1,x2,xn,,它们的算术平均值为:n标准偏差 简称标准差,又称均方根误差,刻划总体的分散程度,可以描述测量数据和测量结果的精度。第19页,共47页,编辑于2022年,星期一随机误差的统计处理n用测量的均值代替真值:n有限次测量中,算术平均值不可能等于真值,即也有偏差,的均方根偏差:第20页,共47页,编辑于2022年,星期一正态分布随机误差的概率计算n
11、几个概念:n置信概率:n置信系数:kn显著度:n测量结果可表示为(计算得到的真值和真值的均方根偏差):k0.674511.9622.5834Pa0.50.68270.950.95450.990.99730.99994几个典型的k值及其相应的概率第21页,共47页,编辑于2022年,星期一正态分布随机误差的概率计算当k=1时,Pa=0.6827,即测量结果中随机误差出现在-+范围内的概率为68.27%,而|v|的概率为31.73%。出现在-3+3范围内的概率是99.73%,因此可以认为绝对值大于3的误差是不可能出现的,通常把这个误差称为极限误差第22页,共47页,编辑于2022年,星期一例题 例
12、1-1对某一温度进行10次精密测量,测量数据如表所示,设这些测得值已消除系统误差和粗大误差,求测量结果。序号测量值xi残余误差vivi2185.710.030.0009285.63-0.050.0025385.65-0.030.0009485.710.030.0009585.690.010.0001685.690.010.0001785.700.020.0004885.6800985.66-0.020.00041085.6800第23页,共47页,编辑于2022年,星期一不等精度直接测量的权与误差n在不等精度测量时,对同一被测量进行m组测量,得到m组测量列(进行多次测量的一组数据称为一测量列)
13、的测量结果及其误差,它们不能同等看待。精度高的测量列具有较高的可靠性,将这种可靠性的大小称为“权”。n“权”可理解为各组测量结果相对的可信赖程度。测量次数多,测量方法完善,测量仪表精度高,测量的环境条件好,测量人员的水平高,则测量结果可靠,其权也大。权是相比较而存在的。权用符号p表示,有两种计算方法:n 用各组测量列的测量次数n的比值表示,并取测量次数较小的测量列的权为1,则有n p1p2pm=n1n2nm n 用各组测量列的误差平方的倒数的比值表示,并取误差较大的测量列的权为1,则有n p1p2pm=第24页,共47页,编辑于2022年,星期一不等精度直接测量的权与误差n加权算术平均值n加权
14、的标准误差 第25页,共47页,编辑于2022年,星期一系统误差的通用处理方法n系统误差产生的原因n传感器、仪表不准确(刻度不准、放大关系不准确)测量方法不完善(如仪表内阻未考虑)安装不当环境不合操作不当n系统误差的判别n实验对比法,例如一台测量仪表本身存在固定的系统误差,即使进行多次测量也不能发现,只有用更高一级精度的测量仪表测量时,才能发现这台测量仪表的系统误差。n残余误差观察法(绘出先后次序排列的残差)n准则检验 第26页,共47页,编辑于2022年,星期一系统误差的通用处理方法第27页,共47页,编辑于2022年,星期一n准则检验法n马利科夫判据是将残余误差前后各半分两组,若“vi前”
15、与“vi后”之差明显不为零,则可能含有线性系统误差。n阿贝检验法则检查残余误差是否偏离正态分布,若偏离,则可能存在变化的系统误差。将测量值的残余误差按测量顺序排列,且设A=v12+v22+vn2,B=(v1-v2)2+(v2-v3)2+(vn-1-vn)2+(vn-v1)2。若 则可能含有变化的系统误差。系统误差的通用处理方法第28页,共47页,编辑于2022年,星期一n系统误差的消除n在测量结果中进行修正 已知系统误差,变值系统误差,未知系统误差n消除系统误差的根源根源?n在测量系统中采用补偿措施n实时反馈修正系统误差的通用处理方法第29页,共47页,编辑于2022年,星期一粗大误差n剔除坏
16、值的几条原则:n3准则(莱以达准则):如果一组测量数据中某个测量值的残余误差的绝对值|vi|3时,则该测量值为可疑值(坏值),应剔除。应用于?n肖维勒准则:假设多次重复测量所得n个测量值中,某个测量值的残余误差|vi|Zc,则剔除此数据。实用中Zc3,所以在一定程度上弥补了3准则的不足。应用于?第30页,共47页,编辑于2022年,星期一粗大误差n格拉布斯准则:某个测量值的残余误差的绝对值|vi|G,则判断此值中含有粗大误差,应予剔除。G值与重复测量次数n和置信概率Pa有关。n此外?第31页,共47页,编辑于2022年,星期一例题n见书P31n解题步骤:求算术平均值及标准差有无粗大误差计算算术
17、平均值的标准差测量结果表示剔除粗大误差有无第32页,共47页,编辑于2022年,星期一测量数据处理中的几个问题n间接测量中的测量数据处理(误差的合成、误差的分配)n最小二乘法的应用(最小二乘法原理)n用经验公式拟合实验数据回归分析第33页,共47页,编辑于2022年,星期一误差的合成n绝对误差和相对误差的合成n绝对误差n相对误差n标准差的合成第34页,共47页,编辑于2022年,星期一绝对误差的合成(例题)n例1-4用手动平衡电桥测量电阻RX。已知R1=100,R2=1000,RN=100,各桥臂电阻的恒值系统误差分别为R1=0.1,R2=0.5,RN=0.1。求消除恒值系统误差后的RX.AR
18、NR2RxR1E解:平衡电桥测电阻原理:即:不考虑R1、R2、RN的系统误差时,有由于R1、R2、RN存在误差,测量电阻RX也将产生系统误差。可得:消除R1、R2、RN的影响,即修正后的电阻应为第35页,共47页,编辑于2022年,星期一最小二乘法的应用n问题的提出n已知铂电阻与温度之间具有如下关系:可用实验方法得到的对应数据,如何求方程中的三个参数?n设 n对应:第36页,共47页,编辑于2022年,星期一最小二乘法的应用n如果测量了次(),理论值为:的第一个下标意思为第次测量()n理论值与实际测量值的误差为:最小二乘法最小二乘法则是“残余误差的平方和为最小”,即最小 第37页,共47页,编
19、辑于2022年,星期一最小二乘法的应用n为此可得到m个方程的组:n求解该方程组可得到最小二乘估计的正规方程正规方程,从而解得最小二乘解、矩阵法矩阵法则第38页,共47页,编辑于2022年,星期一最小二乘法的应用n最小二乘条件 变为方程组即将代入:第39页,共47页,编辑于2022年,星期一最小二乘法的应用(例题)n例铜的电阻值R与温度t之间关系为Rt=R0(1+t),在不同温度下,测定铜电阻的电阻值如下表所示。试估计0时的铜电阻电阻值R0和铜电阻的电阻温度系数。ti()19.125.030.136.040.045.150.0Ri()76.377.879.7580.8082.3583.985.1
20、0解:列出误差方程(i=1,2,3,7)式中:是在温度ti下测得铜电阻电阻值。第40页,共47页,编辑于2022年,星期一令x=r0,y=r0,则误差方程可写为 76.3-(x+19.1y)=v1 77.8-(x+25.0y)=v2 79.75-(x+30.1y)=v3 80.80-(x+36.0y)=v4 82.35-(x+40.0y)=v5 83.9-(x+45.1y)=v6 85.10-(x+50.0y)=v7 第41页,共47页,编辑于2022年,星期一其正规方程按式(1-39)为 a1a1x+a1a2y=a1l a2a1x+a2a2y=a2l于是有将各值代入上式,得到 7x+245.
21、3y=566 245.3x+9325.38y=20 044.5 第42页,共47页,编辑于2022年,星期一解得 x=70.8 y=0.288/即 r0=70.8 第43页,共47页,编辑于2022年,星期一n用矩阵求解,则有 AA=1 19.1 1 25.0 1 30.1 1 36.0 1 40.0 1 45.1 1 50.01 1 1 1 1 1 119.1 25.0 30.1 36.0 40.0 45.1 50.0=7 245.3 245.3 9325.387 245.3245.3 9325.38=5108.7 0 (有解)第44页,共47页,编辑于2022年,星期一(AA)-1=A11 A12A21 A22=9325.85 -245.3-245.3 7AL=1 1 1 1 1 1 119.1 25.0 30.1 36.0 40.0 45.1 50.076.377.879.7580.8082.3583.985.10=56620044.5第45页,共47页,编辑于2022年,星期一第46页,共47页,编辑于2022年,星期一用经验公式拟合实验数据回归分析n用经验公式拟合实验数据,工程上把这种方法称为回归分析。回归分析就是应用数理统计的方法,对实验数据进行分析和处理,从而得出反映变量间相互关系的经验公式,也称回归方程。第47页,共47页,编辑于2022年,星期一
限制150内