材料力学第六章截面的几何性质惯性矩精选文档.ppt
《材料力学第六章截面的几何性质惯性矩精选文档.ppt》由会员分享,可在线阅读,更多相关《材料力学第六章截面的几何性质惯性矩精选文档.ppt(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、材料力学第六章截面的几何性质惯性矩本讲稿第一页,共十一页第六章第六章 截面的几何性质截面的几何性质第一节 静矩和形心一、静矩(面积矩)定义:微面积dA对z轴和y轴的静矩分别为 和 截面(面积A)对z轴和y轴的静矩分别为:静矩为代数值。静矩单位:不同截面对同一坐标轴的静矩不同;同一截面对不同坐标轴的静矩也不同。若截面形心坐标为zc、yc,将面积视为平行力(即看作等厚、均质薄板的重力),由合力矩定理可得:当Sz=0或Sy=0时,必有yc=0或zc=0,可知截面对某轴的静矩为零时,该轴必通过截面形心;反之,若某轴通过形心,则截面对该轴的静矩为零。返回下一张上一张小结本讲稿第二页,共十一页 二、形心公
2、式:三、组合截面的静矩:n个简单图形组成的截面,其静矩为:四、组合截面形心公式:例5-1 求图示T形截面形心位置。解:取参考坐标轴y、z,由对称图形,zc=0。分解图形为、两个矩形,则若分解为、三个矩形,则返回下一张上一张小结本讲稿第三页,共十一页第二节 惯性矩和惯性积一、极惯性矩:定义:平面图形中任一微面积dA与它到坐标原点的距离平方的乘积2dA,称为该面积dA对于坐标原点o的极惯性矩。截面对坐标原点o的极惯性矩为:简单图形的极惯性矩可由定义式积分计算。实心圆截面:空心圆截面:二、惯性矩:定义:平面图形中任一微面积dA对z轴、y轴的惯性矩分别为:y2dA和Z2dA;则整个图形(面积为A)对z
3、轴、y轴的惯性矩分别为:返回下一张上一张小结本讲稿第四页,共十一页 定义:平面图形内,微面积dA与其两个坐标z、y的乘积zydA在整个图形内的积分称为该图形对z、y轴的惯性积。特点:惯性积是截面对某两个正交坐标轴而言。不同截面对同一对轴或同一截面对不同轴的惯性积均不同。惯性积是代数值。单位:若截面有一根为对称轴,则该截面对包括此对称轴在内的一对正交坐标轴的惯性积必为零。惯性矩是对某轴而言的,同一截面对不同轴的惯性矩值不同。惯性矩单位:m4或mm4;惯性矩恒为正值。简单图形对轴的惯性矩由定义式积分计算。返回下一张 上一张小结三、惯性积:本讲稿第五页,共十一页 例5-2 求矩形截面对其对称轴的惯性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料力学 第六 截面 几何 性质 惯性矩 精选 文档
限制150内