基于物联网技术的温室大棚控制系统设计__08电科.docx
《基于物联网技术的温室大棚控制系统设计__08电科.docx》由会员分享,可在线阅读,更多相关《基于物联网技术的温室大棚控制系统设计__08电科.docx(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、德州学院 物理系 2012届 电子信息科学与技术专业 毕业设计 基于物联网技术的温室大棚控制系统设计刘娟(德州学院物理系,山东德州253023)摘 要 基于物联网技术的温室大棚控制系统以AT89S52单片机为核心,采用加热炉和风机、喷灌和渗灌、荧光灯,分别为温室大棚进行加热、增加二氧化碳浓度、增加空气湿度、灌溉、人工补光;使用SHT10数字式温湿度传感器、FDS-100型土壤水分传感器、SH-300-DH二氧化碳传感器和TSL2561光强传感器,将采集的大棚内的数据信息在液晶1602上显示出来,并通过无线通信模块nRF905将信号传到从机。主机完成各项数值预制和报警电路模块功能,从机完成采集数
2、值的显示及加热炉和风机、喷灌和渗灌和荧光灯的控制功能。本文设计的温室大棚控制系统,能够实时采集控制温室内的空气温湿度、土壤湿度、光照强度、二氧化碳浓度等环境参数,以直观的数据显示给用户,并可以根据种植作物的需求提供报警信息。关键词 AT89S52;传感器;nRF9051 绪论 随着通信技术的飞速发展,人们已经不再满足于人一与人之间的通信方式以及需要人参与交互的通信方式,一种更加智能、更加便捷的通信方式为人们所期待。物联网-一种物体、机器间不需要人的参与即可完成信息交互的通信方式(Internet of things)便应运而生1。简单的说,物联网是物物相连的网络,在整个信息采集、传递、计算的过
3、程中无需人的参与交互。物联网是基于传感器技术的新型网络技术,在现代农业中,大量的传感器节点构成了一张张功能各异的监控网络,通过各种传感器采集与作物生产有关的各种生产信息和环境参数,可以帮助农民及时发现问题,准确地捕捉发生问题的位置,对耕作、播种、施肥、灌溉等田间作业进行数字化控制,使农业投入品的资源利用精准化、效率最大化2。无线传感网络由部署在监测区域内大量的微型传感器节点通过无线通信形成的一个多跳自组织的网络,其主要目的是采集与处理该网络覆盖范围内监测参数的信息3。无线传感网络在农业中的一个重要应用是在温室等农业设施中,采用不同的传感器和执行机构对土壤水分,空气温湿度和光照强度,二氧化碳浓度
4、等影响作物生长的环境信息进行实时监测,系统根据监测到的数据将室内水、肥、气、光、热等植物生长所必需的条件控制到最佳状态,保证作物的增产增收。 根据现代农业科学技术的研究结果表明,建立温室可以建立适合植物生长的生态环境,实现作物的高产、高效。在农业现代化的进程中,从作物播种、生长,到收获、加工及检测分析整个过程中都离不开传感器的应用,几乎覆盖了农业工程的全部范围,有力地支撑了智能农业的技术体系。基于以上认识,本论文设计出一种基于物联网技术的温室大棚控制系统。2 系统方案与论证 为了能够设计出一种成本低廉,精确度较高,连接简单的温室大棚控制系统,本设计给出了三种方案。2.1 方案论述 方案一:本温
5、室大棚控制系统以AT89S52单片机为核心,采用加热炉和风机、喷灌和渗灌和荧光灯,分别为温室大棚进行加热、增加空气湿度、灌溉、增加二氧化碳浓度、人工补光;采用SHT10数字式温湿度传感器、FDS-100型土壤水分传感器、SH-300-DH二氧化碳传感器和TSL2561光强传感器分别检测温室大棚的空气温湿度、土壤湿度、二氧化碳浓度、光照度。数据采集部分使用AT89S52单片机,将随被测各项数据变化的电压或电流采集过来,进行数据的处理,在显示电路上,将被测各项数据显示出来。主机将采集到数值在液晶1602上显示出来,并通过无线通信模块nRF905将信号传到从机。此外,主机完成各项数值预制和报警电路模
6、块功能,从机完成采集数值的显示及加热炉和风机、喷灌和渗灌和荧光灯的控制功能。系统的总体结构框图,如图2.1所示。从机AT89S52 无线通信模块主机AT89S52空气温湿度传感器加热系统信号放大电路土壤水分传感器通风系统LCD显示系统二氧化碳传感器渗灌系统补光系统光强传感器报警系统上位机MAX485 图2.1 系统框图方案二:本温室大棚控制系统采用MSP430为主控制器用来总体协调控制整个系统,对内部A/D采集的数据进行处理,与内部设定的数据库比较,根据设定的各参数发出指令控制采光、照明、二氧化碳添加、喷淋子系统,来改变大棚内部的环境,利用MSP430来驱动液晶屏,实时地显示大棚内外的各环境参
7、数。本系统采用两块 TMP275 温度传感器,来采集大棚内外的温度值。湿度和光强利用 MSP430内部A/D 通过 P6.0P6.3 的4个端口进行多通道序列采集。采用TGS4160固态电化学型二氧化碳传感器检测温室大棚中二氧化碳的浓度。系统的体系结构见图2.2。MSP430主控制器液晶屏动态显示温度传感器风扇湿度传感器喷淋子系统二氧化碳传感器采光子系统照明子系统光敏传感器二氧化碳添加子系统键盘输入 图2.2 系统框图方案三:本温室大棚控制系统的核心采用AT89C51单片机;温度传感器采用改进型智能传感器DS18B20;智能湿度传感器采用SHT11;光照度传感器采用GZD-01型光照度感应探头
8、;CO2传感器选用红外线气敏传感器。A/D转换模块采用逐次渐近型8路A/D转换器ADC0809,利用AT89C51单片机的串行I/O口,采用了专用电平转换芯片MAX232,把TTL电平转换成RS232电平,将数据传给上位机( PC机),进行数据的存储。采用液晶显示器(LCD)进行实时显示,系统框图如图2.3所示。LCD显示温度传感器AT89C51单片机二氧化碳传感器键盘电路TC35i模块数据存储光照传感器A/D变换湿度传感器 图2.3 系统框图2.2 方案比较方案一使用的控制器为AT89S52单片机,方案二使用的控制器为MSP430单片机,方案三使用的控制器为AT89C51单片机,没有数据存储
9、功能。与方案二和方案三的单片机相比较,AT89S52单片机功耗低,性能高而且成本不高,并且完全能够满足本方案的需求。方案一使用SHT10数字式温湿度传感器来检测温室大棚中空气的温湿度,方案二选择两块TMP275温度传感器,来采集大棚内外的温度值,方案三选择温度传感器DS18B20采集大棚内的温度。与方案二和方案三的温度传感器相比SHT10数字式温湿度传感器不需外围元件,直接输出经过标定了的相对湿度、温度的数字信号,无需经过AD转换,连接简单,可以有效地解决传统温、湿度传感器的不足。方案一使用FDS-100型土壤水分传感器检测土壤中水分的含量,方案二的湿度和光强利用MSP430内部A/D通过P6
10、.0P6.3的4个端口进行多通道序列采集,方案三湿度传感器SHT11测量湿度。与方案二和方案三相比较,方案一的FDS-100型土壤水分传感器是专业检测土壤水分的传感器,检测精度高,能直接稳定地反应各种土壤的真实水分含量,密封性好,可长期埋入土壤中使用,且不受腐蚀。方案一使用SH-300-DH二氧化碳传感器检测温室大棚中二氧化碳的含量,方案二使用TGS4160固态电化学型二氧化碳传感器检测温室大棚中二氧化碳的浓度,但TGS4160的预热时间较长,一般约为2小时,方案三选用红外线气敏传感器检测二氧化碳浓度。与方案二和方案三相比较,SH-300-DH二氧化碳传感器具有对二氧化碳灵敏度高、受温湿度环境
11、影响小、稳定性好、使用方便、成本低等特点。方案一使用TSL2561光强传感器变送器检测温室大棚内的光强照度,方案二的湿度和光强利用 MSP430内部A/D通过P6.0P6.3的4个端口进行多通道序列采集,方案三使用GZD-01型光照度感应探头。与方案二与方案三相比较,方案一的TSL2561光强传感器采用先进的电路模块技术开发变送器,体积小、安装方便、线性度好、传输距离长、抗干扰能力强。综上所述,根据对三种方案的比较以及对设计的温室大棚控制系统成本低廉,精确度较高,连接简单的要求,选择方案一来设计本温室大棚控制系统。3 系统硬件设计温室大棚控制系统硬件部分主要由控制器模块,电源电路模块,空气温湿
12、度测量电路模块,土壤湿度测量电路模块,光强测量电路模块、二氧化碳浓度测量电路模块,显示电路模块,报警电路模块、通信电路模块、控制电路模块组成。3.1 控制器模块本设计的控制器模块选用AT89S52,它是一种低功耗、高性能CMOS 8位微控制器,具有8K在系统可编程Flash存储器。使用Atmel公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得AT89S52在众多嵌入式控制应用系统中得到广泛应用。 (1) 标准功能:8K字节Flash,256字节
13、RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路4。另外,AT89S52可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。 (2) 在外部结构上,AT89S52单片机和MCS-51系列单片机的结构相同,有三种封装形式,分别是PDIP形式,为40针脚; PLCC形式,为44针脚;TAFP形式,也为44针脚5。其中,常用的为PDIP形式,
14、如图3.1所示。图3.1 AT89S52的引脚图3.2 空气温湿度测量电路模块 本设计选择SHT10数字式温湿度传感器来检测温室大棚中空气的温湿度。SHT10数字式温湿度传感器是由Sensirion公司推出的一种可以同时测量湿度、温度的传感器,不需外围元件直接输出经过标定了的相对湿度、温度的数字信号,可以有效地解决传统温、湿度传感器的不足。其特点:温湿度传感器、信号放大、A/D转换、I2C总线接口全部集成于一个芯片上(CMOSens技术);全校准相对湿度及温度值输出;具有露点值计算输出功能;免外围元件;卓越的长期稳定性;测量精度高,湿度的精度为3. 5,温度的精度为0. 5(在20时);可靠的
15、CRC数据传输校验功能;片内装载的校准系数,保证100%的互换性;电源电压为2. 45. 5V6。引脚功能:1(GND):接地;2(DATA)与3(SCK):串行数字接口,其中DATA为数据线;4(VDD):接电源。 如图3.2所示,SHT10数字式温湿度传感器来检测温室大棚中空气的温湿度,并将检测到的信号传送给单片机的P0口,让单片机处理。图3.2 SHT10数字式温湿度传感器连接电路图3.3 土壤湿度测量电路模块本设计选择FDS-100型土壤水分传感器检测土壤中水分的含量。FDS-100型土壤水分传感器引脚功能7如下: 红线(VDD):5-12 V电源输入 黄线(V-OUT):电压输出01
16、.875V DC 黑线(GND):地线 功能及特点:(1) 本传感器体积小巧化设计,携带方便,安装、操作及维护简单。(2) 结构设计合理,不绣钢探针保证使用寿命。(3) 外部以环氧树脂纯胶体封装,密封性好,可直接埋入土壤中使用,且不受腐蚀。(4) 土质影响较小,应用地区广泛。(5) 测量精度高,性能可靠,确保正常工作。(6) 响应速度快,数据传输效率高。 FDS-100型土壤水分传感器经过LM358经信号放大输送至单片机P0口,电路如图3.3所示。图3.3 FDS-100型土壤水分传感器连接电路图3.4 光强测量电路模块本设计选择TSL2561光强传感器检测温室大棚的光照度。 各引脚的功能8如
17、下: 脚1和脚3分别是电源引脚和信号地。其工作电压工作范围是是2.7V-3.5V。脚2,器件访问地址选择引脚。由于该引脚电平不同,该器件有3个不同的访问地址。 脚4和脚6,总线的时钟信号线和数据线。脚5中断信号输出引脚。当光强度超过用户编程设置的上或下阈值时 器件会输出一个中断信号。TSL2561光强度数字转换芯片与单片机P0相接,电路原理图如图3.4所示。图3.4 TSL2561光强传感器连接电路图3.5 二氧化碳测量电路模块 本设计采用SH-300-DH二氧化碳检测模块检测大棚内的二氧化碳浓度。该模块主要应用于CO2含量的检测,具有体积小,反应灵敏,检测精度高等优点。 其主要性能参数9如下
18、所示: (1)检测范围:0-3000PPM; (2)精度:0-3000PPM,10-50; (3)响应时间:小于30秒(0-80%),数据更新时间:2秒; (4)预热;90秒(25); (5)输出:模拟:0-3V; 数字UART:默认波特率9600bps; (6)输入电压:DC7V-12V; 该模块具有模拟量输出和数字量输出两种方式,在系统设计中,采用的是数字通信方式,该传感器的数字输出脚直连到单片机的RXD管脚上。电路图如图3.5所示。图3.5 SH-300-DH二氧化碳传感器连接电路 3.6 显示电路模块 本设计采用LCD1602作为输出器件,其特点如下: (1)显示质量高:由于LCD每一
19、个点在收到信息后就一直保持那中色彩和亮度, 恒定发光,不需要不断的刷新亮点,因此画质高且不会闪烁。 (2)数字式接口,与单片机系统的接口简单,操作更方便。 (3)体积小,质量轻。(4)功耗低,耗电量比其他显示器件小得多。电路原理图如图3.6所示。图3.6 LCD1602显示电路图3.7 报警电路模块本系统专门设计了报警电路模块,由晶体管和蜂鸣器组成。由单片机I/O口输出信号控制晶体管的导通或截止,晶体管导通,则蜂鸣器报警。当某个监控参数长时间(具体时间由程序设定)超出其合理的上下限范围时,报警系统启动。它与单片机的连接电路如图3.7所示。图3.7 报警电路3.8 通信电路模块本系统的通信电路模
20、块分为主机与从机之间的无线通信和单片机与上位机之间的串口通信。主机与从机之间的无线通信主要是主机把采集到的空气温湿度、土壤湿度、二氧化碳浓度以及光强照度的数据通过一对配置的nRF905无线收发模块发送到从机,从机接收数据并控制加热系统、通风系统、滴灌系统、补光系统以及报警子系统的运行。nRF905是挪威Nordic公司推出的单片射频发射器芯片,工作电压为 1.93.6V,32引脚QFN封装(5mm5mm),工作于433/868/915MHz3个ISM频道。nRF905可以自动完成处理字头和CR (循环冗余码校验)的工作,可由片内硬件自动完成曼彻斯特编码/解码,使用SPI接口与微控制器通信,配置
21、非常方便,其功耗非常低,以- 10dBm的输出功率发射时电流只有11mA,在接收模式时电流为12.5mA10。单片机由I/O端口控制nRF905模块的状态接口、模式接口和SPI 接口。nRF905详细结构图如图3.8所示。3.8 nRF905结构图主机与从机之间的通信通过无线收发模块实现。以AT89S52单片机为微控制器,与设计好的nRF905无线收发模块相连接,具备数据发送和数据接收的功能。连接电路由一对配置nRF905模块构成,其中一端作为发送端,另一端作为接收端。主机与从机之间无线通信连接电路图见附录1。 本系统的单片机与上位机之间的串口通讯采用符合RS-485电气标准的MAX485芯片
22、。RS-485标准的特点:采用差动发送/接收,共模抑制比高,抗干扰能力强;传输速率高,它允许的最大传输速率可达10Mb/s(传送15m);传送距离远,采用双绞线,在不用MODEM的情况下,当以100kb/s的传输速率时,可传送的距离为1.2km;能实现多点对多点的通信,RS-485允许平衡电缆上连接32个发送器/接收器对。它非常适合温室大棚规模扩大时的测控系统的扩展。单片机和上位机之间的通信必须用RS232/RS485转换器EM485B将电平进行转换。MAX-485与单片机连接电路,如图3.9所示。图3.9 单片机与上位机通信电路图3.9 控制电路模块本设计的控制电路模块选用继电器作为控制系统
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 联网 技术 温室 大棚 控制系统 设计 _08
限制150内