08年数学二考试大纲变化及应对策略万学·海文考试科目:高.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《08年数学二考试大纲变化及应对策略万学·海文考试科目:高.docx》由会员分享,可在线阅读,更多相关《08年数学二考试大纲变化及应对策略万学·海文考试科目:高.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第6页 共6页08年数学二考试大纲变化及应对策略万学海文考试科目:高等数学、线性代数试卷结构(一)题分及考试时间试卷满分为150分,考试时间为180分钟.(二)内容比例 高等教学约78线性代数约22%(三)题型比例填空题与选择题约37删除了“45%”解答题(包括证明题)约63%删除了“55%”新大纲变化:填空选择题由37%改为45%,解答题由55%改为63%。 解析与预测:由题型比例的变化可以看出,填空选择题目的数量变化到了06年时的情形,客观题目(选择题、填空题)的比例降低,预计填空题会由原来的10个到08年考试时的8个,主观
2、题目增加了比重,预计在解答当中增加一个高等数学的题目。 变化的目的:考研题型主观题目的增加说明了考研数学题目要增加对同学们的知识的综合分析与计算能力的考查,增加大家选择知识点的判断能力及对题型的熟练运用等方面的能力。更加体现了研究生考试是选拔性考试的特点。 应对策略:大家在复习的时候要注意积累对综合题目的总结与提炼,将典型的数学题目的题型或者解题思想上升到一半的理论,总结成自己容易记忆的适合自己的解题方法。比如:用泰勒公式求极限的题目,看到含有5个基本泰勒公式求极限时,要想到用泰勒公式的含有皮亚诺型余项公式来求。 高等数学第一章、函数、极限、连续考试内容:函数的概念及表示法 函数的有界性、单调
3、性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: , 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求:1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系2. 了解函数的有界性、单调性、周期性和奇偶性3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形
4、,了解初等函数的概念5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法 8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限, 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质第二章:一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与
5、连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(LHospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆增加的内容与曲率半径考试要求:1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公
6、式了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分3. 了解高阶导数的概念,会求简单函数的高阶导数4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理6. 掌握用洛必达法刚求未定式极限的方法7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当f(x)0时,f(x)的图形是
7、凹的;当f(x)0时,f(x)的图形是凸的)增加的内容,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形9. 了解曲率、曲率圆增加的内容和曲率半径的概念,会计算曲率和曲率半径新大纲变化:一元函数微分学部分新加了两个知识点(1) 曲率圆(2) 函数图形凸凹性的判断 解析及应对策略:在原来对曲率以及曲率半径的概念以及计算掌握上,新添加了曲率圆,实际上有曲率半径就肯定对应有一个相应的曲率圆,所以曲率圆可以当作是曲率半径的延伸,这个知识点地增加从考试要求上难度并没有增加。大家可以注意到,虽然在考试内容中提到了曲率圆的概念,但在考试要求中却并未强调对该知识点的应用,只是对概念要求了解。大纲做
8、这样的调整,只是为了完善我们的知识体系。大家在复习曲率有关内容的时候,心中一定要有曲率圆这样一个概念,把曲率圆也要加入到相关的题目当中,从整体上去把握。 新大纲在原有凸凹性要求的基础上进一步强调了凸凹性的判断方法,首先明确大纲做这样的修订与往年相比没有也不会增加难度,但是由于突出强调这个判断方法,除了使叙述更加规范外,更强调了用函数导数判断凹凸性的重要性,有可能会在此问题上用选择填空形式来考核同学们对该知识点的理解。函数的凸凹性本来就是非常重要的一项内容也是经常考到的内容,所以,需要我们在复习这部分内容的时候特要多理解,多练习,多总结。 第三章:一元函数积分学考试内容原函数和不定积分的概念不定
9、积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1. 理解原函数的概念,理解不定积分和定积分的概念2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法3. 会求有理函数、三角函数有理式和简单无理函数的积分4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式5. 了解反常积分的概念,会计算反常积分6. 掌握用定积分表达和计算一些几何量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 08 数学 考试 大纲 变化 应对 策略 科目
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内