新课标2018届高考数学二轮复习第一部分思想方法研析指导思想方法训练3数形结合思想理.doc
《新课标2018届高考数学二轮复习第一部分思想方法研析指导思想方法训练3数形结合思想理.doc》由会员分享,可在线阅读,更多相关《新课标2018届高考数学二轮复习第一部分思想方法研析指导思想方法训练3数形结合思想理.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、思想方法训练3数形结合思想能力突破训练1.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限2.方程sinx的实数解的个数是()A.2B.3C.4D.以上均不对3.若xx|log2x=2-x,则()A.x2x1B.x21xC.1x2xD.x1x24.若函数f(x)=(a-x)|x-3a|(a0)在区间(-,b上取得最小值3-4a时所对应的x的值恰有两个,则实数b的值等于()A.2B.2-或6-3C.63D.2+或6+35.已知函数f(x)=若a,b,c互不相等,且f(a)=f(b)=f(c),
2、则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)6.已知函数f(x)=与g(x)=x3+t,若f(x)与g(x)图象的交点在直线y=x的两侧,则实数t的取值范围是()A.(-6,0B.(-6,6)C.(4,+)D.(-4,4)7.“a0”是“函数f(x)=|(ax-1)x|在区间(0,+)上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图象只有一个交点,则a的值为.9.函数f(x)=2sin xsin-x2的零点个数为.10.若不等式k(x+
3、2)-的解集为区间a,b,且b-a=2,则k=.11.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间0,2上是增函数,若方程f(x)=m(m0)在区间-8,8上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=.12.已知函数f(x)=Asin(x+)的部分图象如图所示.(1)求f(x)的解析式;(2)设g(x)=,求函数g(x)在x上的最大值,并确定此时x的值.思维提升训练13.已知函数f(x)=函数g(x)=b-f(2-x),其中bR,若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是()A.B.C.D.14.设函数f(x)=ex(2x-1)-a
4、x+a,其中a1,若存在唯一的整数x0使得f(x0)1,则有x2x1.4.D解析结合函数f(x)的图象(图略)知,3-4a=-a2,即a=1或a=3.当a=1时,-b2+4b-3=-1(b3),解得b=2+;当a=3时,-b2+12b-27=-9(b9),解得b=6+3,故选D.5.C解析作出f(x)的大致图象.由图象知,要使f(a)=f(b)=f(c),不妨设abc,则-lga=lgb=-c+6.lga+lgb=0,ab=1,abc=c.由图知10c12,abc(10,12).6.B解析如图,由题知,若f(x)=与g(x)=x3+t图象的交点位于y=x两侧,则有解得-6t6.7.C解析当a=
5、0时,f(x)=|x|在区间(0,+)上单调递增;当a0时,f(x)=(-ax+1)x=-ax,结合二次函数的图象可知f(x)=|(ax-1)x|在区间(0,+)上单调递增;当a0时,函数f(x)=|(ax-1)x|的图象大致如图.函数f(x)在区间(0,+)上有增有减,从而“a0”是“函数f(x)=|(ax-1)x|在区间(0,+)上单调递增”的充要条件,故选C.8.-解析在同一坐标系中画出y=2a和y=|x-a|-1的图象如图.由图可知,要使两函数的图象只有一个交点,则2a=-1,a=-9.2解析f(x)=2sinxsin-x2=2sinxcosx-x2=sin2x-x2.如图,在同一平面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课 2018 高考 数学 二轮 复习 第一 部分 思想 方法 研析 指导思想 训练 结合
限制150内