河北南宫中学2015届高三数学上学期第4次周测试卷 文.doc
《河北南宫中学2015届高三数学上学期第4次周测试卷 文.doc》由会员分享,可在线阅读,更多相关《河北南宫中学2015届高三数学上学期第4次周测试卷 文.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、南宫中学2015届高三(上)文科数学第4次周测试题一、选择题1在中,内角的对边分别为,若,则这样的三角形有( )A.0个 B.两个 C.一个 D.至多一个2若,则等于 ( ) A B C D3如果向量与共线且方向相反,则=( )A. B. C.2 D.04在中,已知, ,则为( )A.等边三角形 B.等腰直角三角形C.锐角非等边三角形 D.钝角三角形5已知向量和的夹角为1200,则( ).A. B. C.4 D.6将函数的图象向右平移个单位,再将图象上每一点的横坐标缩短到原来的倍,所得图象关于直线对称,则的最小正值为( ) A. B. C. D.7平面向量与的夹角为,,,则( )A B C4
2、D128已知的面积,则角的大小为( )A. B . C. D. 9已知向量满足,则( ).A0 B1 C2 DCo10已知e1,e2是夹角为60的两个单位向量,若ae1e2,b4e12e2,则a与b的夹角为( ).A30 B60 C120 D15011函数的最小值和最大值分别为( )A.、 B.、 C.、 D.、12设函数()与函数()的对称轴完全相同,则的值为( )A. B. C. D.二、填空题13函数的对称中心为 .14已知向量与的夹角为,且,则 15已知,则 16下列命题中: 向量存在唯一的实数,使得向量; 为单位向量,且向量,则向量; ; 若向量,则向量; 若向量,则。其中正确命题的
3、序号是 .三、解答题17设的内角的对边分别且,若,求的值。18已知函数,(1)求函数f(x)的最大值和最小正周期;(2)若a为锐角,且,求sina的值.19已知,.(1)若,求; (2)若与垂直,求当为何值时,.20在ABC中,角A,B,C的对边分别为,且(1)求角的值; (2)若角,边上的中线=,求的面积21在ABC中,设A、B、C的对边分别为a、b、c,向量,若(1)求角A的大小;(2)若的面积.22已知平面向量,其中,且函数的图象过点(1)求的值;(2)将函数图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数的图象,求函数在上的最大值和最小值参考答案1B【解析】试题分析:由正弦定理
4、得:,因为,所以,即,所以角有两解,从而这样的三角形有两个,因此选择B.考点:正弦定理及三角形解的判断.2A.【解析】试题分析:,即,.考点:1.二倍角公式;2.诱导公式.3B.【解析】试题分析:与,又,反向,.考点:平面向量共线的坐标表示.4B【解析】试题分析:由正弦定理得,在三角形中.,整理的又是等腰直角三角形考点:判断三角形的形状.5D【解析】试题分析:因为向量和的夹角为1200,所以.考点:平面向量的模长公式.6B【解析】试题分析:由于将函数的图象向右平移个单位,得到函数的图象,再将图象上每一点的横坐标缩短到原来的倍,得到函数的图象,而该图象关于直线对称,所以,故知的最小正值为;故选考
5、点:三角函数的图象和性质7B【解析】试题分析:故选B.考点:向量的数量积.8B【解析】略9D.【解析】试题分析:由已知有,所以.考点:,向量的数量积运算.10C.【解析】试题分析:因为,所以,同理,则,又,所以,又,所以.考点:,两向量夹角的余弦公式:,向量数量积的运算律.11C【解析】试题分析:,又,当时,当时,故选择C.三角函数最值的研究,主要有两个去向:一是转化为型;二是转化为型,但是都必须注意正、余弦函数自身的有界性,否则易犯错.考点:三角函数与二次函数的综合.12B【解析】试题分析:对于这两个函数由它们的对称轴完全相同,得到它们的最小正周期也相同,都为,所以应有中的,即有,从而有的对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北南宫中学2015届高三数学上学期第4次周测试卷 河北 南宫 中学 2015 届高三 数学 上学 测试
限制150内