江苏版2018年高考数学一轮复习专题2.12函数模型及其应用测.doc
《江苏版2018年高考数学一轮复习专题2.12函数模型及其应用测.doc》由会员分享,可在线阅读,更多相关《江苏版2018年高考数学一轮复习专题2.12函数模型及其应用测.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题2.12 函数模型及其应用班级_ 姓名_ 学号_ 得分_(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置上(共10题,每小题6分,共计60分)1. 在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为_m.【答案】202.如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长9%的水平,那么要达到国民经济生产总值比1995年翻两番的年份大约是_ (lg20.301 0,lg30.477 1,lg1092.037 4,lg0.092.954 3)【答案】2011年【解析】设1995年总值为a,经过x年翻两番,则a(19%
2、)x4a.x16.3. 给出下列函数模型:一次函数模型;幂函数模型;指数函数模型;对数函数模型.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是_(填序号).x45678910y15171921232527【答案】【解析】根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.4.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为yaebt(cm3),若经过8 min后发现容器内还有一半的沙子,则再经过_min,容器中的沙子只有开始时的八分之一【答案】16【解析】当t0时,ya;当t8时,yae8ba
3、,e8b,容器中的沙子只有开始时的八分之一时,即yaebta.ebt(e8b)3e24b,则t24,所以再经过16 min.5.为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式y()ta(a为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为_(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过_小时后,学生才能回到教室【答案】(1)y
4、(2)0.66.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P(单位:mg/L)与过滤时间t(单位:h)之间的函数关系为PP0ekt(k,P0均为正的常数)如果在前5个小时的过滤过程中污染物被排除了90%,那么至少还需过滤才可以排放【答案】5 h【解析】设原污染物数量为a,则P0a.由题意有10%aae5k,所以5kln10.设t h后污染物的含量不得超过1%,则有1%aaetk,所以tk2ln10,t10.因此至少还需过滤1055 h才可以排放7.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过
5、3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元现某人乘坐一次出租车付费22.6元,则此次出租车行驶了_ km.【答案】9【解析】设出租车行驶x km时,付费y元,则y由y22.6,解得x9.8.某杂志每本原定价2元,可发行5万本,若每本提价0.20元,则发行量减少4 000本,为使销售总收入不低于9万元,需要确定杂志的最高定价是【答案】3元9.某单位“五一”期间组团包机去上海旅游,其中旅行社的包机费为30 000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团中的人数在30或30以下,飞机票每张
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 2018 年高 数学 一轮 复习 专题 2.12 函数 模型 及其 应用
限制150内