浙江版2018年高考数学一轮复习专题6.5数列的综合应用讲.doc
《浙江版2018年高考数学一轮复习专题6.5数列的综合应用讲.doc》由会员分享,可在线阅读,更多相关《浙江版2018年高考数学一轮复习专题6.5数列的综合应用讲.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第05节 数列的综合应用【考纲解读】考点考纲内容五年统计分析预测与数列有关的综合问题1.理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前 n 项和公式及其应用.2了解等差数列与一次函数、等比数列与指数函数的关系.3会用数列的等差关系或等比关系解决实际问题.2017浙江6,22;2016浙江文8;理6,20;2015浙江理20;2014浙江文19;理19.1.高频考向:根据数列的递推式或者通项公式确定基本量,选择合适的方法求和,进一步证明不等式2.低频考向:数列与函数相结合.3.特别关注:(1)灵活选用数列求和公式的形式,关注应用公式的条件;(2)熟悉分组求和法、裂项相消法及错
2、位相减法;(3)数列求和与不等式证明、不等式恒成立相结合求解参数的范围问题.【知识清单】一、等差数列和等比数列比较等差数列等比数列定义常数常数通项公式判定方法(1)定义法;(2)中项公式法:为等差数列;(3)通项公式法:(为常数,) 为等差数列;(4)前n项和公式法:(为常数, ) 为等差数列;(5) 为等比数列,且,那么数列 (,且)为等差数列(1)定义法(2)中项公式法: () 为等比数列(3)通项公式法: (均是不为0的常数,)为等比数列(4) 为等差数列(总有意义)为等比数列性质(1)若,且,则(2) (3) ,仍成等差数列(1)若,且,则(2) (3)等比数列依次每项和(),即 ,仍
3、成等比数列前n项和时,;当时,或.对点练习:【2018年届广西桂林市柳州市高三模拟金卷】已知是等差数列,公差不为零若, , 成等比数列,且,则 .【答案】.二数列求和1. 等差数列的前和的求和公式:.2等比数列前项和公式一般地,设等比数列的前项和是,当时,或;当时,(错位相减法).3. 数列前项和重要公式:(1) (2)(3) (4) 等差数列中,;等比数列中,.对点练习:【2017届浙江台州中学高三10月月考】在等差数列中,其前项和为,等比数列的各项均为正数,公比为,且,(1)求与;(2)证明:【答案】(1),;(2)详见解析.试题解析:(1)设的公差为,解得或(舍), 故,;(2),故,即
4、.【考点深度剖析】数列求和是高考重点考查的内容之一,命题形式多种多样,以解答题为主,难度中等或稍难,数列求和问题为先导,在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.【重点难点突破】 考点1 等差数列和等比数列的综合问题【1-1】【2017杭州调研】已知数列an,bn中,a11,bn,nN*,数列bn的前n项和为Sn.(1)若an2n1,求Sn;(2)是否存在等比数列an,使bn2Sn对任意nN*恒成立?若存在,求出所有满足条件的数列an的通项公式;若不存在,请说明理由;(3)若an是单调递增数列,求证:Sn2.【答案】(1).(2)满足条件的数列an存在,且只
5、有两个,一个是an1,另一个是an(1)n1.(3)证明见解析.(2)解满足条件的数列an存在且只有两个,其通项公式为an1和an(1)n1.证明:在bn2Sn中,令n1,得b3b1.设anqn1,则bn.由b3b1得.若q1,则bn0,满足题设条件.此时an1和an(1)n1.若q1,则,即q21,矛盾.综上所述,满足条件的数列an存在,且只有两个,一个是an1,另一个是an(1)n1.(3)证明因为1a1a2an0,01,于是01.bn2.故Snb1b2bn222222.所以Sn2. 【1-2】已知等比数列an的各项均为正数,且2a13a21,a9a2a6. (1)求数列an的通项公式;
6、(2)设bnlogan,求数列的前n项和Tn.【答案】(1)an;(2)(2)an,bnlog 2n,从而,Tn.【领悟技法】1公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前项和的公式来求和.对于一些特殊的数列(正整数数列、正整数的平方和立方数列等)也可以直接使用公式求和.2倒序相加法:类似于等差数列的前项和的公式的推导方法,如果一个数列的前项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前项和即可用倒序相加法,如等差数列的前项和公式即是用此法推导的3错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对
7、应项之积构成的,那么这个数列的前项和即可用此法来求,如等比数列的前项和公式就是用此法推导的若,其中是等差数列,是公比为等比数列,令 ,则两式错位相减并整理即得.4裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.适用于类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等. 5. 易错提示利用裂项相消法解决数列求和问题,容易出现的错误有两个方面:(1)裂项过程中易忽视常数,如容易误裂为,漏掉前面的系数;(2)裂项之后相消的过程中容易出现丢项或添项的问题,导致计算结果错
8、误应用错位相减法求和时需注意:给数列和Sn的等式两边所乘的常数应不为零,否则需讨论;在转化为等比数列的和后,求其和时需看准项数,不一定为n.【触类旁通】【变式一】【2017东北三省四校模拟】已知等差数列an的前n项和为Sn,公差d0,且S3S550,a1,a4,a13成等比数列.(1)求数列an的通项公式;(2)设是首项为1,公比为3的等比数列,求数列bn的前n项和Tn.【答案】(1)an2n1.(2)Tnn3n.(2)3n1,bnan3n1(2n1)3n1,Tn353732(2n1)3n1,3Tn33532733(2n1)3n1(2n1)3n,两式相减得,2Tn32323223n1(2n1)
9、3n32(2n1)3n2n3n,Tnn3n.【变式二】在数列an中,a12,a212,a354,数列an13an是等比数列(1)求证:数列是等差数列;(2)求数列an的前n项和Sn.【答案】(1)证明:见解析(2)3n.【解析】(1)证明:a12,a212,a354,a23a16,a33a218.又数列an13an是等比数列,an13an63n123n,2,数列是等差数列(2)由(1)知数列是等差数列,(n1)22n,an2n3n1.Sn213022312n3n1,3Sn21322322n3n.Sn3Sn2130213213n12n3n22n3n3n12n3n,Sn3n.考点2 数列的综合应用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江 2018 年高 数学 一轮 复习 专题 6.5 数列 综合 应用
限制150内