二次函数解析式的确定教案.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《二次函数解析式的确定教案.docx》由会员分享,可在线阅读,更多相关《二次函数解析式的确定教案.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数解析式的确定教案二次函数教案 20.1二次函数 一、教学目标: 1学问与技能: 通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过视察和分析,学生归纳出二次函数的概念并能够依据函数特征识别二次函数. 2数学思索: 学生能对详细情境中的数学信息作出合理的说明,能用二次函数来描述和刻画现实事物间的函数关系. 3解决问题: 体验数学与日常生活亲密相关,让学生相识到很多问题可以用数学方法解决,体验实际问题“数学化”的过程. 4情感与看法: 通过视察、归纳、猜想、验证等教学活动,给学生创建胜利机会,使他们爱学、乐学、学会,同时培育学生勇于探究,主动合作精神以及公允竞
2、争的意识. 二、教学重点、难点: 教学重点:相识二次函数,经验探究函数关系、归纳二次函数概念的过程. 教学难点:依据函数解析式的结构特征,归纳出二次函数的概念. 三、教学方法和教学手段: 在确定二次函数的概念和寻求生活实例中的二次函数关系式的过程中,引导学生视察、比较、分析和概括,以小组探讨的形式,进行合作探究 在教学手段方面,选择了多媒体课件协助教学的方式 四、教学过程: 师生活动设计意图 1、问题感知,情境切入. 老师展示实际问题: “第18届世界杯足球赛”是今年夏天最“热”的一个话题,绿荫场上运动员挥汗如雨,绿荫场外教练员运筹帷幄.足球运动是一项对运动员状态(包括体能、速度和技术意识)要
3、求很高的项目,一般状况下,足球运动员的状态会随着时间的改变而改变:竞赛起先后,球员渐渐进入状态,中间有一段时间球员保持较为志向的状态,随后球员的状态渐渐下降.经试验分析可知:球员的状态综合指数y随时间t的改变规律有如下关系: (1)竞赛起先后第10分钟时与竞赛起先后第50分钟时比较,什么时间球员的状态更好? (2)竞赛起先后多少分钟时,球员的状态最好,这样的最好状态能持续多少分钟? 通过学生之间的探讨,很简单得出第(1)问的答案:竞赛起先后第10分钟时,y=140;竞赛起先后第50分钟时,y=220;所以,竞赛起先后第50分钟时球员的状态更好. 当学生起先进行第(2)问的解答时,遇到了不同的困
4、难: (1)不知道如何探讨当50t90时,y的改变范围? (2)通过仿照一次函数的性质,学生求出了函数y=中,y的改变范围是.却无法说出这样做的数学依据是什么? 全部的困难都指向一个焦点问题: y=是个什么样的函数?它具有什么样的独特性质? 因此,学生产生了探讨函数y=的爱好,老师趁机提出今日的学习内容. 以“世界杯足球赛”这样贴近学生生活实际的问题为背景,力求更好地激发学生的求知欲,使之成为主动、主动的探究者,并在解决实际问题的过程中体验胜利的欢乐,同时为新课的引出和学习奠定了基础. 这是一道结合实际的自编题,其中的数据来源于自己做的社会调查.足球运动是一项集体运动项目,对运动员的协作意识要
5、求很高,所以运动员上场后30分钟左右才进入最佳状态,中场休息后状态仍能保持到最佳,50分钟后由于体能的下降影响了状态的发挥. 2、讲解新课,提炼学问. (1)对比、分析 老师举诞生活中的其它实例,感受二次函数的意义,进一步深化对二次函数概念的相识. 如图,正方形中圆的半径是4cm,阴影部分的面积Q(cm2)和正方形的边长a(cm)的函数关系式是_ 某种药品现价每盒26元,安排两年内每年的降价率都为p,那么,两年后这种药品每盒的价格M(元)和年降价率p的函数关系式是_ 答案:M=26(1-p)2 (2)类比、迁移 老师顺势提问:对y=、Q=a2-16、M=26(1-p)2这三个函数你能用一个一般
6、形式来表示吗? 老师参加到学生的分组探讨中去,合作沟通,留意刚好抓住学生才智火花的出现进行引导.老师激励学生用不同字母表示,只要把握概念的实质即可,必要时可提示学生,类比一次函数的学问. (3)二次函数的相识 一般地,我们把形如y=ax2+bx+c(a0)(说明:括号内的条件,在第(4)步之后再补写)的函数叫做二次函数,其中a、b分别是二次项系数、一次项系数,c是常数项. (4)加深理解 二次函数的定义给出后,老师引导学生分别探讨“a、b、c的取值范围”.学生就问题自由发言,老师充分引导学生发表自己的看法,只要合理,都应确定.最终师生达到共识: a不能为0,因为当a=0时,右边不再是x的二次式
7、; b、c都能为0,因为当b=0、c=0或b、c都为0时,右边仍是x的二次式. 老师对所得出的常量范围,进行概念补写. 通过两个实例的分析,让学生通过自己列解析式,来思索所列解析式的结构特征,为概括二次函数的定义打下基础. 引导学生侧重从解析式的特征思索,透过“引用不同字母”的表层现象,看到解析式的“结构一样”的本质.放开思想,广泛争论,实现对二次函数本质的相识. 充分确定学生的探究结果,使其树立“我也能发觉数学”的信念. 老师的提问意在引起学生的思维冲突,使之产生探究的欲望. 遵循学生认知发展及学问系统的形成过程,由一般到特别逐步为概念的理解铺平道路. 3、分层实践,实力升级. 快速抢答 下
8、面各函数中,哪些是二次函数? (1)y=2x2y=x2+3 y=(x0)y=15x-1 y=(x+1)2+2y=3x2-2x-5 y=-x(x2+4)y= 答:、是二次函数 (2)请写出这些二次函数中a、b、c的值. abc y=2x2200 y=x2+3 03 y=(x+1)2+2 =x2+2x+3123 y=3x2-2x-53-2-5 特殊强调:只有把解析式整理成一般形式,才能正确推断解析式中的a、b、c. 1.轻松完成:矩形的周长为20cm,它的面积S(cm2)和它的一边长a(cm)的函数关系式是怎样的?并求出此函数的定义域. 答案:S=a(10-a)=-a2+10a, 其中函数的定义域
9、为:0a10. 2.物理中的数学:钢球从斜面顶端由静止(运动起先时的速度V0=0)起先沿斜面滚下,速度每秒增加1.5m/s (1)写出即时速度Vt与时间t的函数关系式; (2)写出平均速度与时间t的函数 关系式;(提示:本题中,平均速度) (3)写出滚动的距离S(单位:米)与滚动的时间t(单位:秒)之间的关系式.(提示:本题中,距离S=平均速度时间t) (4)请推断以上三个函数的类型,假如是二次函数,写出解析式中的a、b、c. 答案: (1)Vt=1.5t; (2)=; (3)S=t=; (4)函数Vt=1.5t和=是一次函数,函数S=是二次函数,解析式中的a=,b=0,c=0. 3.请你帮个
10、忙:某果园有100棵橘子树,每一棵树平均结600个橘子.现打算多种一些橘子树以提高产量,但是假如多种树,那么树与树之间的距离和每一棵树所接受的阳光就会削减.依据阅历估计,每多种一棵树,平均每棵树就会少结5个橘子.那么,如何表示增种的橘子树的数量x(棵)与橘子总产量y(个)之间的函数关系式呢?推断这个函数的类型,假如是二次函数,写出解析式中的a、b、c. 答案: 解析式中的a=-5,b=100,c=60000. 4.你出题大家做如图,正方形ABCD的边长是5,E是AB上的一个动点,G是AD的延长线上一点,且BE=DG,GFAB,EFAD,_? 请同学们以小组为单位尝试编一道实际函数问题,列出的函
11、数关系是可以是二次函数,也可以是一次函数. 估计学生可能想到: 矩形AEGF的面积y与BE的长x 之间的关系可以用怎样的函数来表示? 答案: 矩形AEMD的面积y与BE的 长x之间的关系可以用怎样的函数来表示? 答案: 矩形BEMC的面积y与BE的长x之间的关系可以用怎样的函数来表示? 答案: 矩形DMFG的面积y与BE的长x之间的关系可以用怎样的函数来表示? 答案: 其它类型:六边形ABCMFG的周长y与BE的长x之间的函数关系;矩形AEGF的周长y与BE的长x之间的函数关系; 这是一道概念辨析题,目的是让学生正确识别二次函数,同时相识二次函数解析式中a、b、c的意义. 通过求函数的定义域,
12、让学生体会实际问题中的二次函数的特点。 通过这道题的支配,让学生体会到了二次函数应用的广泛性。同时,学生在列解析式的过程中,从对比的角度全面了解判定二次函数的方法,进一步了解不同函数的差异,从而对函数的本质有更深化了解。 这道实际问题的解决,培育了学生的视察实力和归纳实力,更重要的是让学生体验了实际问题“数学化”的过程. 爱好是学习的动力源泉,学生在参加编题的过程中,培育了与人合作的精神和创新意识,通过学生多层次、多角度地解决问题的方式,使原本枯燥的数学课堂渐渐被开放、热情,富于创建性的课堂气氛所代替,成为激发学生潜力的最佳土壤. 4、展示沟通,总结新知. (1)学生自己总结,并在班上沟通 本
13、节课 我学会了 使我感受最深的 我感到最困难的是 我最值得学习的同学是 (2)结合学生所述,老师赐予指导: 正确理解“二次函数”定义,关注和定义有关的留意问题. 生活中到处有数学的影子,只要留心视察身边的事物,开动脑筋,就能用数学学问解决很多的生活实际问题. 课堂小结以老师提问、学生自由探讨的形式进行,借此促进师生心灵的沟通,学生对自己醒悟的相识和总结,必定促进其自主学习,获得可持续发展的动力. 5、布置作业、巩固学问. (1)阅读教材相应内容,完成课后习题第45-46页第1、2题. (2)实践题: 推想植物的生长与温度的关系 科幻小说试验室的故事中,有这样一个情节:科学家把一种珍奇植物分别放
14、在不同温度的环境中,经过肯定时间后,测试出这种植物的增长状况(如下表) 温度t/-7-5-3-11357 植物高度 增长量L/mm12541494941251 由这些数据,科学家推想出植物的增加量L与温度t的函数关系,并由它推想出最适合这种植物增长的温度. 你能想出科学家是怎样推想的吗?请在直角坐标系里画出这个函数的大致图象,依据图象写出你的分析. 必做题促进学问的巩固,实践题供学有余力的学生完成,进一步培育发散思维及社会实践实力. 设置贴近学生生活的实际问题情境,并要求学生尝试画出二次函数的图象来解决实际问题,激发学生探究新知的欲望,为以后的教学埋下伏笔. 五、教案设计说明: 1留意联系实际
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 解析 的确 教案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内