高一数学《集合的概念》学案.docx
《高一数学《集合的概念》学案.docx》由会员分享,可在线阅读,更多相关《高一数学《集合的概念》学案.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学集合的概念学案高一数学集合的概念46课题:1.1集合集合的概念(2)教学目的:(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义(3)会运用集合的两种常用表示方法教学重点:集合的表示方法教学难点:运用集合的列举法与描述法,正确表示一些简洁的集合授课类型:新授课课时支配:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)自然数集:全体非负整数的集合记作N,(2)正整数集:非负整数集内
2、解除0的集记作N*或N+,(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R,3、元素对于集合的隶属关系(1)属于:假如a是集合A的元素,就说a属于A,记作aA(2)不属于:假如a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:根据明确的推断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有肯定的依次(通常用正常的依次写出)5、(1)集合通常用大写的拉丁字母表示,如A、B、C、P、Q元素通常用小写的拉丁字母表示,如a、b、c、p、q(2)“”
3、的开口方向,不能把aA颠倒过来写二、讲解新课:(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程的全部解组成的集合,可以表示为-1,1注:(1)有些集合亦可如下表示:从51到100的全部整数组成的集合:51,52,53,100全部正奇数组成的集合:1,3,5,7,(2)a与a不同:a表示一个元素,a表示一个集合,该集合只有一个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:xA|P(x)含义:在集合A中满意条件P(x)的x的集合例如,不等式的解集可以表示为:或全部直角三角形的集合可以表示为:注:(1
4、)在不致混淆的状况下,可以省去竖线及左边部分如:直角三角形;大于104的实数(2)错误表示法:实数集;全体实数3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合有些集合的元素不能无遗漏地一一列举出来,或者不便于、不须要一一列举出来,常用描述法如:集合;集合1000以内的质数例集合与集合是同一个集合吗?答:不是因为集合是抛物线上全部的点构成的集合,集合=是函数的全部函数值构成的数集(三)有限集与无限集1、有限集:含有有限个元素的集合2、无限集:含有无限个元素的集合3、空集:不含任何元素的
5、集合记作,如:三、练习题:1、用描述法表示下列集合1,4,7,10,13-2,-4,-6,-8,-102、用列举法表示下列集合xN|x是15的约数1,3,5,15(x,y)|x1,2,y1,2(1,1),(1,2),(2,1)(2,2)注:防止把(1,2)写成1,2或x=1,y=2-1,1(0,8)(2,5),(4,2)(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)3、关于x的方程axb=0,当a,b满意条件_时,解集是有限集;当a,b满意条件_时,解集是无限集4、用描述法表示下列集合:(1)1,5,25,125,625=;(2)0,=
6、四、小结:本节课学习了以下内容:1集合的有关概念:有限集、无限集、空集2集合的表示方法:列举法、描述法、文氏图五、课后作业:六、板书设计(略)七、课后记:高一数学集合的概念教学设计课题:1.1集合集合的概念 教学目的: (1)使学生初步理解集合的概念,知道常用数集的概念及记法 (2)使学生初步了解“属于”关系的意义 (3)使学生初步了解有限集、无限集、空集的意义 教学重点:集合的基本概念及表示方法 教学难点:运用集合的两种常用表示方法列举法与描述法,正确表示 一些简洁的集合 授课类型:新授课 课时支配:1课时 教具:多媒体、实物投影仪 内容分析:1集合是中学数学的一个重要的基本概念在小学数学中
7、,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从起先学习数学就离不开对逻辑学问的驾驭和运用,基本的逻辑学问在日常生活、学习、工作中,也是相识问题、探讨问题不行缺少的工具这些可以帮助学生相识学习本章的意义,也是本章学习的基础把集合的初步学问与简易逻辑学问支配在中学数学的最起先,是因为在中学数学中,这些学问与其他内容有着亲密联系,它们是学习、驾驭和运用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集
8、合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习爱好,使学生相识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在起先接触集合的概念时,主要还是通过实例,对概念有一个初步相识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明 教学过程: 一、复习引入: 1简介数集的发展,复习最大公约数和最小公倍数,质数与和数; 2教材中的章头引言; 3集合论的创始人康托尔(德国数学家)(见附录); 4“物以类聚”,
9、“人以群分”; 5教材中例子(P4) 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念: 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素. 定义:一般地,某些指定的对象集在一起就成为一个集合 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法 (1
10、)非负整数集(自然数集):全体非负整数的集合记作N, (2)正整数集:非负整数集内解除0的集记作N*或N+ (3)整数集:全体整数的集合记作Z, (4)有理数集:全体有理数的集合记作Q, (5)实数集:全体实数的集合记作R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括 数0 (2)非负整数集内解除0的集记作N*或N+Q、Z、R等其它 数集内解除0的集,也是这样表示,例如,整数集内解除0 的集,表示成Z* 3、元素对于集合的隶属关系 (1)属于:假如a是集合A的元素,就说a属于A,记作aA (2)不属于:假如a不是集合A的元素,就说a不属于A,记作 4、集合中元素的特性 (1)
11、确定性:根据明确的推断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有肯定的依次(通常用正常的依次写出) 5、集合通常用大写的拉丁字母表示,如A、B、C、P、Q 元素通常用小写的拉丁字母表示,如a、b、c、p、q “”的开口方向,不能把aA颠倒过来写 三、练习题: 1、教材P5练习1、2 2、下列各组对象能确定一个集合吗? (1)全部很大的实数(不确定) (2)好心的人(不确定) (3)1,2,2,3,4,5(有重复) 3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2_ 4、由实数x,x,x,所组
12、成的集合,最多含(A) (A)2个元素(B)3个元素(C)4个元素(D)5个元素 5、设集合G中的元素是全部形如ab(aZ,bZ)的数,求证: (1)当xN时,xG; (2)若xG,yG,则xyG,而不肯定属于集合G 证明(1):在ab(aZ,bZ)中,令a=xN,b=0, 则x=x0*=abG,即xG 证明(2):xG,yG, x=ab(aZ,bZ),y=cd(cZ,dZ) x+y=(ab)+(cd)=(a+c)+(b+d) aZ,bZ,cZ,dZ (a+c)Z,(b+d)Z x+y=(a+c)+(b+d)G, 又 且不肯定都是整数, 不肯定属于集合G 四、小结:本节课学习了以下内容: 1集
13、合的有关概念:(集合、元素、属于、不属于) 2集合元素的性质:确定性,互异性,无序性 3常用数集的定义及记法 五、课后作业: 六、板书设计(略) 七、课后记: 八、附录:康托尔简介 发疯了的数学家康托尔(GeorgCantor,18451918)是德国数学家,集合论的创始者1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷 康托尔11岁时移居德国,在德国读中学1862年17岁时入瑞士苏黎世高校,翌年入柏林高校,主修数学,1866年曾去格丁根学习一学期1867年以数论方面的论文获博士学位1869年在哈雷高校通过讲师资格考试,后在该高校任讲师,1872年任副教授,1879年任教授 由于探
14、讨无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),很多大数学家生怕陷进去而实行退避三舍的看法在18741876年期间,不到30岁的年轻德国数学家康托尔向神奇的无穷宣战他靠着辛勤的汗水,胜利地证明白一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了很多惊人的结论 康托尔的创建性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至
15、说康托尔是“疯子”来自数学权威们的巨大精神压力最终摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院 真金不怕火炼,康托尔的思想最终大放光彩1897年实行的第一次国际数学家会议上,他的成就得到承认,宏大的哲学家、数学家罗素赞扬康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍旧神志恍惚,不能从人们的崇敬中得到劝慰和喜悦1918年1月6日,康托尔在一家精神病院去世 集合论是现代数学的基础,康托尔在探讨函数论时产生了探究无穷集和超穷数的爱好康托尔确定了无穷数的存在,并对无穷问题进行了哲学的探讨,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础 康托尔创立了集
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 集合的概念 数学 集合 概念
限制150内