数理统计课后习题答案.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数理统计课后习题答案.docx》由会员分享,可在线阅读,更多相关《数理统计课后习题答案.docx(59页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数理统计课后习题答案 基本概念1解:设 为总体的样本 1)2)3)所以4)2.解:由题意得:i 0 1 2 3 4 个数 6 7 3 2 2 f xi0.3 0.35 0.15 0.1 0.1 因为 ,所以1 2 3 4 5, , , , X X X X X511 51 (1, ) ( , , ) (1 )i ix xiX B p f x x p p-= -55 5(1 )11(1 ) ,5x xiip p x x-= - =l ll ll5515 515 1!) , , () ( -=-= = exexx x f P Xiixi ix iL51 5511 1 ( , ) ( , , ) ,
2、, 1,.,5( )iX U a b f x x a xi b ib a b a= = =- -51 51, , 1,.,5( ) ( , , )0,a xi b ib a f x x =- = 其他( ) -= = =-=-5122 / 55125 121exp 221) , , () 1 , ( 2iiixx e x x f N Xippm L0110,( ) ,1,n k kkx xkF x x x xnx x+ 40, 00.3,0 10.65,1 2( )0.8,2 30.9,3 41, 4xxxF xxxx 3解:它近似听从均值为 172,方差为 5.64 的正态分布,即4解:因
3、k 较大(172,5.64) N( )55-5510 / 2- - - = = kXk P kXP k X Pm mm( ) ( ) ( ) ( ) ( ) ( )( )- 5 5 5 (1 5 ) 2 5 1 0.95 0.95P X k k k k k kkm F -F - =F - -F = F - =F =0 1 0.9 0.8 0.70.6 0.50.4 0.30.2 0.1 1 234 x y5解: 6解:7.解: 查卡方分位数表 c/4=18.31,c=73.248解:由已知条件得:由 相互独立,知 也相互独立,所以9.解: 1)2)3)4),5 1.65, 0.33 k k =
4、 = 查表( )-5250.8 53.8 1.1429 1.7143 (1.7143) ( 1.14296.3/6XP X P = - = - + - = + = - = = 则(1, ), 1 ( )i XY B p p F m = -iXiY1( , ), 1 ( ).ni XiY B n p p F m= -) 1 ( ,) 1 (,2p Np DX ESnp NpnDXX D Np EX X E - = =-= = = =lll = = = = = = DX ESn nDXX D EX X E2, ,( ) ( )12,12,2222a bDX ESna bnDXX Db aEX X
5、E-= =-= =+= =1 ,1,2= = = = = = DX ESn nDXX D EX X E m 10.解:1)2)11.解: 12.解:1)2) ( )2 2 212) 1 ( ) 1 ( ) 1 ( ) 1 ( s - = - = - = - = -=n DX n ES n S n E X X Enii( )2 222 4 22 21( 1) ( 1)( 1) , ( 1)niin S n SD X X D n S D n s cs s= - - = - = - ( )2412( 1)niiD X X n s= - = -pp p p p pnX Edt e dy e y dy
6、e y X nE Y Enn DY X E EY N X n Y n N Xty y2) (,2) 1 (222222| |21) () , 11, 0 ( ), 1 , 0 ( ), / 1 , 0 ( ) 102022 2= G = = = = = = = = =- +- +- + - Q 令pp p p p p2 1 1,2) 1 (222222| |21), 1 , 0 ( ) 21 102022 2= = G = = = = = =- +- +- + -niiniitx xX EnXnEdt e dx e x dx e x X EN X( )222 42/XE X E X En nm
7、m m - = - = ( )24 41 0 0.12/ 2/X XD En n n nm m - -= + = + 40 n 2 22 201 1, 22/ 2/ 2 2u uX Xu E u e du u e dun nm mp p+ +- - -= = = 3) 13.解: 14解:1) 且 与 相互独立2)2 222 20 0220 02 22 22 2 22 2 2 22 2 2 2(1) , 0.1,2/2 2 80010, 254.6, 255u uutue du ue duue d e dtXE X En n nn n np pp p pmmp pp p+ +- -+ +-=
8、= = =-G = - = = = ( ) ( )1 1 12 2 2/n X nP X P X Pnmm m - = - - = - 0.9752 1 0.95,2 2 21.96, 15.36, 162n n nnu n n =F -F - = F - = ( ) ( )( )1 12 221 1 1 1 11 1,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b= = = - = - = - = - = 1 2 3 4 5 (0,2), (0,3) X X N X X X N + + +3 4 5 1 2 (0,1), (0,1)2 3X
9、 X X X XN N+ + +1 22X X +3 4 53X X X + +1 11 1, , 2.2 3c d n = = =( )23 4 52 2 2 21 2 (2), (1)3X X XX X c c+ +15.解:设 ,即 16解:17.证明:1)( )( )2 21 22 23 4 523 (2,1), , 2, 123X XF c m nX X X+= = =+ +1(1, )pF n a-= ( ) 1 ( ) 1 P F p P F p a a a = - - = -( ) ( ) 12 ( ) 2( ) 12P T P T pP T ppP Ta aaa - - =
10、- = - = -122112( )( ) (1, )pp pt nt n F naa- = = =( )( ) ( )( )( ) ( )( )( ) ( )1 2 1 21 2 1 22 2 2 2 21 2 1 2 1 22 21 2 1 22 2 2 21 2 1 2 1 2 1 221 22 21 2 1 2 (0,2), (0,2), (0,1), (0,1)2 2( ) (1),( ) ( ) (2)2 2 2221 0.1,2X X X XX X N X X N N NX X X X X XX X X X tP t PX X X X X X X XX X tPX X X Xcc
11、 c+ -+ -+ + -+ + + = + + - + + - + = - = + + - =0.9 (1,2)8.532tF = =2 21 1 12 22121221 1( ) 0, ( ) , (0, )1( 1)1( 1)1 11n n nnnn nE X X D X X X X Nn nnS nX XnX X nnt nn S nSns scsss+ + + +- = - = -+- = -+ -又 2)3)18. 解:19.解20.解:21. 解:1)因为 ,从而2 21 1 11 1( ) 0, ( ) , (0, )n n nn nE X X D X X X X Nn ns
12、s+ + + +- = - = -2 21 1 11 1( ) 0, ( ) , (0, )n nE X X D X X X X Nn ns s- - = - = -( ) ( )( ) 62 , 47 . 61 , 96 . 1 25 . 0 , 975 . 0 25 . 0, 95 . 0 1 25 . 0 2 25 . 0/25 . 0 25 . 0975 . 0 = F - F =- - = -n n u n nn nnXn P X Psms m , 0,1, , ( ) , ( ) ,0, , 1,X U a bx ax a b x af x F x a x b b ab ax a
13、bx b - = = 1(1) ( )(1 ( ) ( )nf x n F x f x- = -111( )1( ) , , 0, , 1( ) , , ( ) ( ( ) ( )0, , nnnnb an x a bb a b ax a bx an x a bf x n F x f x b a b ax a b- = - - = = - -( ) ( ) ( ) ( ) ( )( ) ( )5 5(1) (1)1 1515 5 55 55 5(5)1 110 1 10 1 10 1 1 10121 1 121 (1 ( 1) 1 (1 1 (1) 1 (1) 0.57851215 15 1.
14、5 (1.5) 0.9332 0.70772i ii iiiiii iP X P X P X P XXPXP X P X P= = = = - = - = - - - = - - - = - -F - = - - +F = -F =- = = SSPSSP FSS( )( ) 94 . 0 05 . 0 99 . 0 57 . 37 85 . 10) 20 ( ), 1 , 0 ( ), , 0 ( 22012 22220122= - = = -=-=cc csmsmsms mPXXNXN Xii iiii25. 解:1)2)26.解:1)2) 3) 27解:28.解:( )895 . 0 1
15、 . 0 995 . 0 58 . 381965 . 11 ), 19 ( 192222222012= - = =-=scs sSPSX Xii( ) 4532 . 0 7734 . 0 2 2 1 ) 75 . 0 ( 2 1431435 / 20803 80 = - = + F - = - =-= - U PXP X P( ) ( ) 05 . 0 1 975 . 0 2 1 064 . 2 1 064 . 25 / 2674 . 7803 80 = + - = - =-= - T PXP X P8413 . 0 120472 . 4472 . 4=-=-= + s ss a XPa XP
16、 a X P2 2 2 2 2 22 2 2 2 223 1 32 2 2 2 2 2 2SP S P S P S Ps s s s ss ss - = - - = = 22199.5 28.5 0.95 0.05 0.9SPs = -=-=-cc cT PcT Pc SXPc SXP cXSPm mm22cov( , )( , )( ) ( )1( ) ( )1cov( , ) ( )1( , )1i ji ji ji ji j i j i ji jX X X Xr X X X XD X X D X XnD X X D X XnX X X X E X X X X X X X Xnr X X
17、X Xnss- - - =- - = - =- - = - - - = - - - = -习题二、参数估计1 解:矩估计所以 ,2解:1) 无解,依定义:2)矩法:( )2 2 21212) 1 ( 2 ) 1 ( , ) 1 (, 21), 2 , 2 ( ss m- = - = - = - = = + =+n ES n ET S n Y Y TX YnY N X X YY Yniinii i n i i令( )1 3.40.1 0.2 0.9 0.8 0.7 0.76 6X = + + + + + =( ) ( )1 111 1ln ln( 1) lnn nni ii iniiL x xL
18、 n xa aa aa a= = = + = + = + + 121ln ln 01ˆ 1 0.2112lnniiniid nL xdnxaa aa= = + =+= - - =3077 . 012 1ˆ ,212) 1 ( ) 1 (1101021=-= =+=+ = + = +XXXxdx x EX aaaaa aaa1 211 2ˆ ˆ , 11lnniiX nXXa a= - = = - +- 1 2ˆ ˆ 0.3079, 0.2112 a a 3077 . 0 2ˆ,21= = = = X X EX qq11 1l
19、n 0nniLnLq qq= = - =21ˆmaxii nX q =21 1ˆ ˆ1.2, 0.4722 12EX DXq q= = = =极大似然估计:31)解:矩法估计:最大似然估计: 2)解:矩估计:最大似然估计: 3)解: 矩估计:联立方程: 极大似然估计:依照定义,4) 解: 矩估计:,不存在 2 2ˆ ˆ1.1, 0.18332 12EX DXq q= = = =11 1ˆ, EX XXll= = =11 1,ln lnnii in n xx nii iL e e L n L xlll l l=-= = = = - 21
20、11ˆln 0,ni niiid n nL xd Xxll l= - = = = ( ) X P lX X EX = = =1ˆ, l l1,ln lnix nxnniii iL e e L n nx xx xl ll ll l- -= = = - + - 2ˆln 0,d nxL n Xdll l= - + = =( )2,2 12b a a bEX DX- += =( )2*2*2*221ˆ 32ˆ3a X Mb X Ma bXb aM= -+ =-= + 1 1ˆˆ min , maxi ii n i na X b X
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数理统计 课后 习题 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内