等比数列前n项和学案(1).docx
《等比数列前n项和学案(1).docx》由会员分享,可在线阅读,更多相关《等比数列前n项和学案(1).docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、等比数列前n项和学案(1)等比数列前n项和 课题:等比数列前n项和(两课时)运用方法1上课前留意自主预习完成学案导学和探究部分2上课时小组探讨沟通解决自己不会的问题学习目标1驾驭等比数列的前n项和公式及公式证明思路2会用等比数列的前n项和公式解决有关等比数列的一些简洁问题重点难点等比数列的前n项和公式当时,或当q=1时,当已知,q,n时用公式;当已知,q,时,用公式.推导方法错位相减法一般地,设等比数列它的前n项和是由得当时,或当q=1时,推导方法等比定理有等比数列的定义,依据等比的性质,有即(结论同上)等比数列前项的和是,那么,成等比数列等比数列的前n项和公式与函数 探究沟通1求等比数列1,
2、2,4,从第5项到第10项的和2一个等比数列前项的和为前项之和,求 3已知是数列前项和,(,),推断是否是等比数列 4在等比数列中,前项和,求和公比 5设数列为求此数列前项的和课堂反馈【选择题】1若等比数列的前项和,则等于()ABCD2已知数列既是等差数列又是等比数列,则这个数列的前n项和为()0?Bn?na?a3已知等比数列中,=23,则由此数列的偶数项所组成的新数列的前n项和的值为()31?B3(31)?4实数等比数列,则数列中()随意一项都不为零?B必有一项为零至多有有限项为零可以有多数项为零5在等比数列中,前项和为,若数列也是等比数列,则等于()ABCD6在等比数列中,使的最小的值是(
3、)【填空题】7已知数列的前n项和=n,则.8一个数列的前n项和为=12+34+(1)n,则S?9已知正项等比数列共有2m项,且=9(),=4(),则=,公比q=.10在等比数列中,已知,则11已知等比数列的前项和为,且,成等差数列,则的公比为【解答题】12在等比数列中,已知:,求13设等比数列的前项和为,若,求数列的公比 14各项均为正数的等比数列,若前前项和为,且,求15已知等比数列共有项,前项和为,其后项和为,求最终项和 16三个互不相等的数成等差数列,假如适当排列此三数,也可成等比数列,已知这三个数的和等于6,求这三个数 17.已知数列是首项,公比的等比数列,是其前项和,且,成等差数列(
4、)求公比的值;()求的值 18.已知数列中,是它的前项和,且,设()()求证:数列是等比数列,并求数列的通项公式;()求证: 等比数列前n项和学案(3) 2.5等比数列的前n项和(3) 学习目标1.进一步娴熟驾驭等比数列的通项公式和前n项和公式;2.会用公式解决有关等比数列的中知道三个数求另外两个数的一些简洁问题. 学习过程一、课前打算(预习教材P57P62,找出怀疑之处)复习1:等比数列的前n项和公式.当时,当q=1时, 复习2:等比数列的通项公式.=. 二、新课导学学习探究探究任务:等比数列的前n项和与通项关系问题:等比数列的前n项和,(n2),当n1时,. 反思:等比数列前n项和与通项的
5、关系是什么?典型例题例1数列的前n项和(a0,a1),试证明数列是等比数列. 变式:已知数列的前n项和,且,设,求证:数列是等比数列.例2等比数列前n项,前2n项,前3n项的和分别是,求证:,也成等比. 变式:在等比数列中,已知,求. 动手试试练1.等比数列中,求. 等比数列的前n项和等比数列的前n项和教学目标1.把握等比数列前项和公式,并能运用公式解决简洁的问题.(1)理解公式的推导过程,体会转化的思想;(2)用方程的思想熟识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;2.通过公式的敏捷运用,进一步渗透方程的思想、分类探讨的思想、等价转化的思想.3.通过公式推导的教学,对学
6、生进行思维的严谨性的练习,培育他们实事求是的科学看法.教学建议教材分析(1)学问结构先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.(2)重点、难点分析教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类探讨思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是把握推导公式的方法.等比数列前项和公式是分状况探讨的,在运用中要非凡注意和两种状况.教学建议(1)本节内容分为两课时,一节为等比数列前项
7、和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.(2)等比数列前项和公式的推导是重点内容,引导学生视察实例,发觉规律,归纳总结,证明结论.(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的爱好.(4)编拟例题时要全面,不要忽视的状况.(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.(6)补充可以化为等差数列、等比数列的数列求和问题.教学设计示例课题:等比数列前项和的公式教学目标(1)通过教学使学生把握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.(2)通过公式的推导过程,
8、培育学生猜想、分析、综合实力,提高学生的数学素养.(3)通过教学进一步渗透从非凡到一般,再从一般到非凡的辩证观点,培育学生严谨的学习看法.教学重点,难点教学重点是公式的推导及运用,难点是公式推导的思路.教学用具幻灯片,课件,电脑.教学方法引导发觉法.教学过程一、新课引入:(问题见教材第129页)提出问题:(幻灯片)二、新课讲解:记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.(板书)即,-得即.由此对于一般的等比数列,其前项和,如何化简?(板书)等比数列前项和公式仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即(板书)
9、两端同乘以,得,-得,(提问学生如何处理,适时提示学生注意的取值)当时,由可得(不必导出,但当时设想不到)当时,由得.于是反思推导求和公式的方法错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.(板书)例题:求和:.设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.解:,两端同乘以,得,两式相减得于是.说明:错位相减法事实上是把一个数列求和问题转化为等比数列求和的问题.公式其它应用问题注意对公比的分类探讨即可.三、小结:1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;2.用错位相减法求一些数列的前项和.四、作业:略.五、板书设计:等比数列前项和公式例题等比数列前
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等比数列
限制150内