七年级上册数学第三章3.1从算式到方程(人教版).docx
《七年级上册数学第三章3.1从算式到方程(人教版).docx》由会员分享,可在线阅读,更多相关《七年级上册数学第三章3.1从算式到方程(人教版).docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、七年级上册数学第三章3.1从算式到方程(人教版)从算式到方程 3.1从算式到方程教案一、教学目标(一)基础学问目标:1.理解方程的概念,驾驭如何推断方程。2.理解用字母表示数的好处。(二)实力目标体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。(三)情感目标增加用数学的意识,激发学习数学的热忱。二、教学重点知道什么是方程、一元一次方程,找相等关系列方程。三、教学难点如何找相等关系列方程四、教学过程(一)创设情景,引入新课由学生已有的学问动身,结合章前图提出的问题,激发学生进一步探究的欲望。在小学算术中,我们学习了用算术方
2、法解决实际问题的有关学问,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢? 为了回答上述这几个问题,我们来看下面这个例题(二)提出问题章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠湖的路程有多远?你会用算术方法解决这个实际问题么?不妨试一下。假如设王家庄到翠湖的路程为x千米,你能列出方程吗?依据题意画出示意图。由图可以用含x的式子表示关于路程的数量,王家庄距青山千米,王家庄距秀水千米,由时辰表可以得出关于路程的数量,从王家庄
3、到青山行车小时,王家庄到秀水小时,汽车匀速行驶,各路段车速相等,于是列出方程:=(1)各表示的意义是什么?以后我们将学习如何解出x,从而得到结果。例1某数的3倍减2等于某数与4的和,求某数例2环行跑道一周长400米,沿跑道跑多少周,可以跑3000米?五、课堂小结用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用到已知数,而方程是依据问题中的等量关系列出的等式,其中有已知数,又有未知数,有了方程后人们解决许多问题就便利了,通过今后的学习,你会逐步相识,从算式到方程是数学的进步。六、作业布置习题3.1第1,2两题 3.1从算式到方程第2课时一、教学目标(一)基础学问目标:1.理解
4、方程的概念,驾驭如何推断方程。2.理解用字母表示数的好处。(二)实力目标体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。(三)情感目标增加用数学的意识,激发学习数学的热忱。二、教学重点知道什么是方程、一元一次方程,找相等关系列方程。三、教学难点如何找相等关系列方程四、教学过程我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系因此对于任何一个应用题中供应的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程本节课,我们就通过实例来说明怎样找寻一个相等的关系和把这个相等关系转化为方程的方法和步骤师生共同
5、分析、探讨一元一次方程解简洁应用题的方法和步骤例1某面粉仓库存放的面粉运出15后,还剩余42500千克,这个仓库原来有多少面粉?师生共同分析:1本题中给出的已知量和未知量各是什么?2已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15x千克,由题意,得x-15x=42500,此时,让学生探讨:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)老
6、师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以随意选择其中的一个相等关系来列方程;依据例2的分析与解答过程,首先请同学们思索列一元一次方程解应用题的方法和步骤;然后,实行提问的方式,进行反馈;最终,依据学生总结的状况,老师总结如下:(1)细致审题,透彻理解题意即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;(2)依据题意找出能够表示应用题全部含义的一个相等关系(这是关键一步);(3)依据相等关系,正确列出方程即所列的方程应满意两边的量要相等;例3(投影)初一2班第一小组同学去苹果园参与劳动,休息时工人师
7、傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?(仿按例2的分析方法分析本题,如学生在某处感到困难,老师应做适当点拨解答过程请一名学生板演,老师巡察,刚好订正学生在书写本题时可能出现的各种错误并严格规范书写格式)解:设第一小组有x个学生,依题意,得3x+9=5x-(5-4),解这个方程:2x=10,所以x=5其苹果数为35+9=24答:第一小组有5名同学,共摘苹果24个学生板演后,引导学生探讨此题是否可有其他解法,并列出方程(设第一小组共摘了x个苹果,则依题意,得)课堂练习:1买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0
8、.12元,问练习本每本多少元?2某工厂女工人占全厂总人数的35,男工比女工多252人,求全厂总人数五、课堂小结首先,让学生回答如下问题:1本节课学习了哪些内容?2列一元一次方程方法和步骤是什么?3在运用上述方法和步骤时应留意什么?依据学生的回答状况,老师总结如下:(1)代数方法的基本步骤是:全面驾驭题意;恰当选择变数;找出相等关系;布列方程)(2)以上步骤同学应在理解的基础上记忆六、作业布置1买3千克苹果,付出10元,找回3角4分问每千克苹果多少钱?2用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米? 3.1.3从算是到方程第3课时一、教学目标(一)使学生初步驾驭一元一
9、次方程解简洁应用题的方法和步骤;并会列出一元一次方程解简洁的应用题;(二)培育学生视察实力,提高他们分析问题和解决问题的实力;3使学生初步养成正确思索问题的良好习惯二、教学重点和难点一元一次方程解简洁的应用题的方法和步骤三、教学过程我们可以干脆看出像4x=24,x+1=3这样简洁方程的解,但是仅仅依靠视察来解决比较困难的方程是很困难的,因此,我们还要探讨怎么样解方程,方程是含有未知数的等式,为了探讨方程,我们先来看看等式有什么性质。像m+n=n+m,x+2x=3x,3x+!=5y这样的式子都是等式。由教科书中天平的图形,由它可以发觉什么规律?我们可发觉,假如在平衡的天平两边都加(或减)同样的量
10、,天平还保持平衡。等式就像平衡的天平,它具有与上面的事实同样的性质。由此,我们得出等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等。用字母表示:a=b,那么ac=bc等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。用字母表示:假如a=b,那么ac=bc假如a=b,(c0),那么=通过例题来对等式的性质进行巩固。例:利用等式的性质解下列方程。(1)x+7=26;(2)-5x=20;(3)-x-5=4分析:要使方程x+7=26转化为x=a(常数)的形式,要去掉方程左边的7,因此两边要减7,另外两个方程如何转化为x=a的形式。解:(1)两边减7,得x+7-7=26-7
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 上册 数学 第三 3.1 算式 方程 人教版
限制150内