传感器技术 第讲 温度传感器PPT讲稿.ppt
《传感器技术 第讲 温度传感器PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《传感器技术 第讲 温度传感器PPT讲稿.ppt(101页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、传感器技术第讲温度传感器第1页,共101页,编辑于2022年,星期四 表示温度大小的尺度是温度的标尺,简称温标。热力学温热力学温标、国际实用温标、摄氏温标、华氏温标标、国际实用温标、摄氏温标、华氏温标 为解决国际上温度标准的同意及实用问题,国际上协商决定,建立一种既能体现热力学温度(即能保证一定的准确度),又使用方便、容易实现的温标,即国际实用温标International Practical Temperature Scale of 1968(简称IPTS-68),又称国际温标。1968年国际实用温标规定热力学温度是基本温度,用t表示,其单位是开尔文,符号为K。1K定义为水三相点热力学温度的
2、1/273.16,水的三相点是指纯水在固态、液态及气态三项平衡时的温度,热力学温标规定三相点温度为273.16 K,这是建立温标的惟一基准点。注意:摄氏温度的分度值与开氏温度分度值相同,即温度间隔1K=1。T0是在标准大气压下冰的融化温度,T0=273.15 K。水的三相点温度比冰点高出0.01 K。第2页,共101页,编辑于2022年,星期四氢氧三相点沸点54.36190.188-218.798-182.962水三相点沸点273.16373.150.01100.0锌凝固点692.73419.58银凝固点1235.08961.93金凝固点1337.581064.43物质三相点平衡状态温度T68
3、/KT68/13.817.04220.827.102-259.31-256.108-252.87-246.048沸点25/76atm沸点沸点国际实用温标(IPTS-68)的固定点第3页,共101页,编辑于2022年,星期四 四个温度段:规定各温度段所使用的标准仪器 低温铂电阻温度计(13.81K273.15K);铂电阻温度计(273.15K903.89K);铂铑-铂热电偶温度计(903.89K1337.58K);光测温度计(1337.58K以上)。国际实用开尔文温度与国际实用摄氏温度分别用符号T68和t68来区别(一般简写为T与t)。摄氏温标 是工程上最通用的温度标尺。摄氏温标是在标准大气压(
4、即101325Pa)下将水的冰点与沸点中间划分一百个等份,每一等份称为摄氏一度(摄氏度,),一般用小写字母t表示。与热力学温标单位开尔文并用。摄氏温标与国际实用温标温度之间的关系如下:t=T-273.15 T=t+273.15 K 华氏温标 目前已用得较少,它规定在标准大气压下冰的融点为32华氏度,水的沸点为212华氏度,中间等分为180份,每一等份称为华氏一度,符号用,它和摄氏温度的关系如下:m=1.8n+32 n=5/9(m-32)第4页,共101页,编辑于2022年,星期四热电偶、测温电阻器、热敏电阻、感温铁氧体、石英晶体振动器、双金属温度计、压力式温度计、玻璃制温度计、辐射传感器、晶体
5、管、二极管、半导体集成电路传感器、可控硅分类特征传感器名称超高温用传感器1500以上光学高温计、辐射传感器高温用传感器10001500光学高温计、辐射传感器、热电偶中高温用传感器5001000光学高温计、辐射传感器、热电偶中温用传感器0500低温用传感器-2500极低温用传感器-270-250BaSrTiO3陶瓷晶体管、热敏电阻、压力式玻璃温度计见表下内容测温范围温度传感器分类(1)第5页,共101页,编辑于2022年,星期四分类特征传感器名称测温范围宽、输出小测温电阻器、晶体管、热电偶半导体集成电路传感器、可控硅、石英晶体振动器、压力式温度计、玻璃制温度计线性型测温范围窄、输出大热敏电阻指数
6、型函数开关型特性特定温度、输出大感温铁氧体、双金属温度计测温特性温度传感器分类(2)第6页,共101页,编辑于2022年,星期四分类特征传感器名称测定精度0.10.5铂测温电阻、石英晶体振动器、玻璃制温度计、气体温度计、光学高温计温度标准用测定精度0.55热电偶、测温电阻器、热敏电阻、双金属温度计、压力式温度计、玻璃制温度计、辐射传感器、晶体管、二极管、半导体集成电路传感器、可控硅绝对值测定用管理温度测定用相对值15测定精度温度传感器分类(3)第7页,共101页,编辑于2022年,星期四 此外,还有微波测温温度传感器、噪声测温温度传感器、温度图测温温度传感器、热流计、射流测温计、核磁共振测温计
7、、穆斯保尔效应测温计、约瑟夫逊效应测温计、低温超导转换测温计、光纤温度传感器等。这些温度传感器有的已获得应用,有的尚在研制中。第8页,共101页,编辑于2022年,星期四 4.1 热电偶温度传感器热电偶温度传感器温差热电偶(简称热电偶)是目前温度测量中使用最普遍的传感元件之一。它除具有结构简单,测量范围宽、准确度高、热惯性小,输出信号为电信号便于远传或信号转换等优点外,还能用来测量流体的温度、测量固体以及固体壁面的温度。微型热电偶还可用于快速及动态温度的测量。一、热电偶的工作原理 两种不同的导体或半导体A和B组合成如图所示闭合回路,若导体A和B的连接处温度不同(设TT0),则在此闭合回路中就有
8、电流产生,也就是说回路中有电动势存在,这种现象叫做热电效应热电效应。这种现象早在1821年首先由西拜克(Seeback)发现,所以又称西拜克效应。回路中所产生的电动势,叫热电势。热电势由两部分组成,即温差电势和接触电势。热电偶原理图TT0AB热端冷端第9页,共101页,编辑于2022年,星期四1.接触电势接触电势原理图+ABTeAB(T)-eAB(T)导体A、B结点在温度T 时形成的接触电动势;e单位电荷,e=1.610-19C;k波尔兹曼常数,k=1.3810-23 J/K;NA、NB 导体A、B在温度为T 时的电子密度。接触电势的大小与温度高低及导体中的电子密度有关。接触电势的大小与温度高
9、低及导体中的电子密度有关。第10页,共101页,编辑于2022年,星期四AeA(T,To)ToTeA(T,T0)导体A两端温度为T、T0时形成的温差电动势;T,T0高低端的绝对温度;A汤姆逊系数,表示导体A两端的温度差为1时所产生的温差电动势,例如在0时,铜的=2V/。2.温差电势温差电势原理图第11页,共101页,编辑于2022年,星期四 由导体材料A、B组成的闭合回路,其接点温度分别为T、T0,如果TT0,则必存在着两个接触电势和两个温差电势,回路总电势:T0TeAB(T)eAB(T0)eA(T,T0)eB(T,T0)AB 3.回路总电势NAT、NAT0导体A在结点温度为T和T0时的电子密
10、度;NBT、NBT0导体B在结点温度为T和T0时的电子密度;A、B导体A和B的汤姆逊系数。第12页,共101页,编辑于2022年,星期四在工程应用中,常用实验的方法得出温度与热电势的关系并做成表格,以供备查。由公式可得:EAB(T,T0)=EAB(T)-EAB(T0)=EAB(T)-EAB(0)-EAB(T)-EAB(T0)=EAB(T,0)-EAB(T0,0)热电偶的热电势,等于两端温度分别为热电偶的热电势,等于两端温度分别为T T 和零度以及和零度以及T T0 0和零度的热和零度的热电势之差。电势之差。结论:1、热电偶回路热电势只与组成热电偶的材料及两端温度有关;与热电偶的长度、粗细无关。
11、2、只有用不同性质的导体(或半导体)才能组合成热电偶;相同材料不会产生热电势,因为当A、B两种导体是同一种材料时,ln(NA/NB)=0,也即EAB(T,T0)=0。3、只有当热电偶两端温度不同,热电偶的两导体材料不同时才能有热电势产生。4、导体材料确定后,热电势的大小只与热电偶两端的温度有关。如果使EAB(T0)=常数,则回路热电势EAB(T,T0)就只与温度T有关,而且是T的单值函数,这就是利用热电偶测温的原理。第13页,共101页,编辑于2022年,星期四 对于有几种不同材料串联组成的闭合回路,接点温度分别为T1、T2、Tn,冷端温度为零度的热电势。其热电势为 E=EAB(T1)+EBC
12、(T2)+ENA(Tn)二、热电偶回路的性质 1.均质导体定律 由一种均质导体组成的闭合回路,不论其导体是否存在温度梯度,回路中没有电流(即不产生电动势);反之,如果有电流流动,此材料则一定是非均质的,即热电偶必须采用两种不同材料作为电极。2.中间导体定律一个由几种不同导体材料连接成的闭合回路,只要它们彼此连接的接点温度相同,则此回路各接点产生的热电势的代数和为零。如图,由A、B、C三种材料组成的闭合回路,则E总=EAB(T)+EBC(T)+ECA(T)=0TABCTT第14页,共101页,编辑于2022年,星期四两点结论:l)将第三种材料C接入由A、B组成的热电偶回路,如图,则图a中的A、C
13、接点2与C、A的接点3,均处于相同温度T0之中,此回路的总电势不变,即同理,图b中C、A接点2与C、B的接点3,同处于温度T0之中,此回路的电势也为:EAB(T1,T2)=EAB(T1)-EAB(T2)EAB(T1,T2)=EAB(T1)-EAB(T2)T2T1AaBC23EABaAT023ABEABT1T2 CT0(a)(b)T0T0第三种材料接入热电偶回路图第15页,共101页,编辑于2022年,星期四ET0T0TET0T1T1T电位计接入热电偶回路 根据上述原理,可以在热电偶回路中接入电位计E,只要保证电位计与连接热电偶处的接点温度相等,就不会影响回路中原来的热电势,接入的方式见下图所示
14、。第16页,共101页,编辑于2022年,星期四EAB(T,T0)=EAC(T,T0)+ECB(T,T0)T0TEBA(T,T0)BAT0TEAC(T,T0)ACT0TECB(T,T0)CB 2)如果任意两种导体材料的热电势是已知的,它们的冷端和热端的温度又分别相等,如图所示,它们相互间热电势的关系为:第17页,共101页,编辑于2022年,星期四 3.中间温度定律 如果不同的两种导体材料组成热电偶回路,其接点温度分别为T1、T2(如图所示)时,则其热电势为EAB(T1,T2);当接点温度为T2、T3时,其热电势为EAB(T2,T3);当接点温度为T1、T3时,其热电势为EAB(T1,T3),
15、则BBA T2 T1 T3 AABEAB(T1,T3)=EAB(T1,T2)+EAB(T2,T3)第18页,共101页,编辑于2022年,星期四EAB(T1,T3)=EAB(T1,0)+EAB(0,T3)=EAB(T1,0)-EAB(T3,0)=EAB(T1)-EAB(T3)ABT1T2T2ABT0T0热电偶补偿导线接线图E对于冷端温度不是零度时,热电偶如何分度表的问题提供了依据。如当T2=0时,则:只要T1、T0不变,接入AB后不管接点温度T2如何变化,都不影响总热电势。这便是引入补偿导线原理。EAB=EAB(T1)EAB(T0)说明:当在原来热电偶回路中分别引入与导体材料A、B同样热电特性
16、的材料A、B(如图)即引入所谓补偿导线时,当EAA(T2)=EBB(T2),则回路总电动势为第19页,共101页,编辑于2022年,星期四三、热电偶的常用材料与结构热电偶材料应满足:l物理性能稳定,热电特性不随时间改变;l化学性能稳定,以保证在不同介质中测量时不被腐蚀;l热电势高,导电率高,且电阻温度系数小;l便于制造;复现性好,便于成批生产。(一)热电偶常用材料(一)热电偶常用材料 1铂铂铑热电偶(S型)分度号LB3 工业用热电偶丝:0.5mm,实验室用可更细些。正极:铂铑合金丝,用90铂和10铑(重量比)冶炼而成。负极:铂丝。测量温度:长期:1300、短期:1600。特点:材料性能稳定,测
17、量准确度较高;可做成标准热电偶 或基准热电偶。用途:实验室或校验其它热电偶。测量温度较高,一般用来测量1000以上高温。在高温还原性气体中(如气体中含Co、H2等)易被侵蚀,需要用保护套管。材料属贵金属,成本较高。热电势较弱。第20页,共101页,编辑于2022年,星期四 2镍铬镍硅(镍铝)热电偶(K型)分度号EU2工业用热电偶丝:1.22.5mm,实验室用可细些。正极:镍铬合金(用88.489.7镍、910铬,0.6硅,0.3锰,0.40.7钴冶炼而成)。负极:镍硅合金(用95.797镍,23硅,0.40.7钴冶炼而成)。测量温度:长期1000,短期1300。特点:价格比较便宜,在工业上广泛
18、应用。高温下抗氧化能力强,在还原性气体和含有SO2,H2S等气体中易被侵蚀。复现性好,热电势大,但精度不如WRLB。第21页,共101页,编辑于2022年,星期四 3镍铬考铜热电偶(E型)分度号为EA2工业用热电偶丝:1.22mm,实验室用可更细些。正极:镍铬合金负极:考铜合金(用56铜,44镍冶炼而成)。测量温度:长期600,短期800。特点:价格比较便宜,工业上广泛应用。在常用热电偶中它产生的热电势最大。气体硫化物对热电偶有腐蚀作用。考铜易氧化变质,适于在还原性或中性介质中使用。4铂铑30铂铑6热电偶(B型)分度号为LL2正极:铂铑合金(用70铂,30铑冶炼而成)。负极:铂铑合金(用94铂
19、,6铑冶炼而成)。测量温度:长期可到1600,短期可达1800。特点:材料性能稳定,测量精度高。还原性气体中易被侵蚀。低温热电势极小,冷端温度在50以下可不加补偿。成本高。第22页,共101页,编辑于2022年,星期四 (二)常用热电偶的结构类型 1工业用热电偶 下图为典型工业用热电偶结构示意图。它由热电偶丝、绝缘套管、保护套管以及接线盒等部分组成。实验室用时,也可不装保护套管,以减小热惯性。工业热电偶结构示意图1接线盒;2保险套管3绝缘套管4热电偶丝1234第23页,共101页,编辑于2022年,星期四(a)(b)(c)(d)132 2铠装式热电偶(又称套管式热电偶)断面如图所示。它是由热电
20、偶丝、绝缘材料,金属套管三者拉细组合而成一体。又由于它的热端形状不同,可分为四种型式如图。优点是小型化(直径从12mm到0.25mm)、寿命、热惯性小,使用方便。测温范围在1100以下的有:镍铬镍硅、镍铬考铜铠装式热电偶。图3.2-12铠装式热电偶断面结构示意图1金属套管;2绝缘材料;3热电极(a)碰底型;(b)不碰底型;(c)露头型;(d)帽型第24页,共101页,编辑于2022年,星期四 3快速反应薄膜热电偶 用真空蒸镀等方法使两种热电极材料蒸镀到绝缘板上而形成薄膜装热电偶。如图,其热接点极薄(0.010.lm)。因此,特别适用于对壁面温度的快速测量。安装时,用粘结剂将它粘结在被测物体壁面
21、上。目前我国试制的有铁镍、铁康铜和铜康铜三种,尺寸为 6060.2mm;绝缘基板用云母、陶瓷片、玻璃及酚醛塑料纸等;测温范围在300以下;反应时间仅为几ms。4123快速反应薄膜热电偶1热电极;2热接点;3绝缘基板;4引出线第25页,共101页,编辑于2022年,星期四 4快速消耗微型热电偶 下图为一种测量钢水温度的热电偶。它是用直径为0.050.lmm的铂铑10一铂铑30热电偶装在U型石英管中,再铸以高温绝缘水泥,外面再用保护钢帽所组成。这种热电偶使用一次就焚化,但它的优点是热惯性小,只要注意它的动态标定,测量精度可达土57。1 14 42 2 3 35 56 67 78 8 9 91111
22、1010快速消耗微型1刚帽;2石英;3纸环;4绝热泥;5冷端;6棉花;7绝缘纸管;8补偿导线;9套管;10塑料插座;11簧片与引出线第26页,共101页,编辑于2022年,星期四 四、冷端处理及补偿 原因热电偶热电势的大小是热端温度和冷端的函数差,为保证输出热电势是被测温度的单值函数,必须使冷端温度保持恒定;热电偶分度表给出的热电势是以冷端温度0为依据,否则会产生误差。方法 冰点槽法 计算修正法 补正系数法 零点迁移法 冷端补偿器法 软件处理法第27页,共101页,编辑于2022年,星期四mVABABTCC仪表铜导线试管补 偿 导线热 电偶冰点槽冰 水 溶液T0 1.冰点槽法 把热电偶的参比端
23、置于冰水混合物容器里,使T0=0。这种办法仅限于科学实验中使用。为了避免冰水导电引起两个连接点短路,必须把连接点分别置于两个玻璃试管里,浸入同一冰点槽,使相互绝缘。第28页,共101页,编辑于2022年,星期四 2.计算修正法 用普通室温计算出参比端实际温度TH,利用公式计算 例 用铜-康铜热电偶测某一温度T,参比端在室温环境TH中,测得热电动势EAB(T,TH)=1.999mV,又用室温计测出TH=21,查此种热电偶的分度表可知,EAB(21,0)=0.832mV,故得EAB(T,0)=EAB(T,21)+EAB(21,T0)=1.999+0.832=2.831(mV)再次查分度表,与2.8
24、31mV对应的热端温度T=68。注意:既不能只按1.999mV查表,认为T=49,也不能把49加上21,认为T=70。EAB(T,T0)=EAB(T,TH)+EAB(TH,T0)第29页,共101页,编辑于2022年,星期四 3.补正系数法 把参比端实际温度TH乘上系数k,加到由EAB(T,TH)查分度表所得的温度上,成为被测温度T。用公式表达即 式中:T为未知的被测温度;T为参比端在室温下热电偶电势与分度表上对应的某个温度;TH室温;k为补正系数,其它参数见下表。例 用铂铑10铂热电偶测温,已知冷端温度TH=35,这时热电动势为11.348mV查S型热电偶的分度表,得出与此相应的温度T=11
25、50。再从下表中查出,对应于1150的补正系数k=0.53。于是,被测温度 T=1150+0.5335=1168.3()用这种办法稍稍简单一些,比计算修正法误差可能大一点,但误差不大于0.14。T T k T H第30页,共101页,编辑于2022年,星期四温度T/补正系数k铂铑10-铂(S)镍铬-镍硅(K)1000.821.002000.721.003000.690.984000.660.985000.631.006000.620.967000.601.008000.591.009000.561.0010000.551.0711000.531.1112000.5313000.5214000.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 传感器技术 第讲 温度传感器PPT讲稿 传感器 技术 温度传感器 PPT 讲稿
限制150内