第7章数字系统设计实例PPT讲稿.ppt
《第7章数字系统设计实例PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《第7章数字系统设计实例PPT讲稿.ppt(170页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第7章章 数字系统设计数字系统设计实例实例第1页,共170页,编辑于2022年,星期一7.1 半整数分频器的设计半整数分频器的设计 在数字系统设计中,分频器是一种基本电路。分频器的实现非常简单,可采用标准的计数器,也可采用可编程逻辑器件来实现一个整数分频器。分频器通常用来对某个给定频率进行分频,得到所需的频率。在某些场合下,用户所需要的频率与频率时钟源不是整数倍关系,此时可采用小数分频器进行分频。第2页,共170页,编辑于2022年,星期一 7.1.1 小数分频的基本原理 设有一个5 MHz的时钟源,但电路中需要产生一个2 MHz的时钟信号,由于分频比为2.5,因此整数分频器将不能胜任。采用
2、可编程逻辑器件实现分频系数为2.5的分频器,可采用以下方法:设计一个模3的计数器,再设计一个扣除脉冲电路,加在模3计数器输出之后,每来两个脉冲就扣除一个脉冲(实际上是使被扣除的脉冲变成很窄的脉冲,可由异或门实现),就可以得到分频系数为2.5的小数分频器。采用类似方法,可以设计分频系数为任意半整数的分频器。第3页,共170页,编辑于2022年,星期一 小数分频的基本原理为脉冲吞吐计数法:设计两个不同分频比的整数分频器,通过控制单位时间内两种分频比出现的不同次数,从而获得所需的小数分频值。例如设计一个分频系数为10.1的分频器,可以将分频器设计成9次10分频,1次11分频,这样总的分频值为 (91
3、0+111)/(9+1)=10.1 第4页,共170页,编辑于2022年,星期一 从这种实现方法的特点可以看出,由于分频器的分频值在不断改变,因此分频后得到的信号抖动较大。当分频系数为N-0.5(N为整数)时,可控制扣除脉冲的时间,使输出为一个稳定的脉冲频率,而不是一次N分频,一次N-1分频。第5页,共170页,编辑于2022年,星期一 7.1.2 电路组成 设需要设计一个分频系数为N-0.5的分频器,其电路可由一个模N计数器、一个二分频器和一个异或门组成,如图7-1所示。在实现时,模N计数器可设计成带预置的计数器,这样就可以实现任意分频系数为N-0.5的分频器。第6页,共170页,编辑于20
4、22年,星期一 图7-1 通用半整数分频器第7页,共170页,编辑于2022年,星期一7.1.3 VHDL程序LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY deccount IS PORT(inclk:IN STD_LOGIC;-时钟源 preset:IN STD_LOGIC_VECTOR(3 DOWNTO 0);-预置分频值N第8页,共170页,编辑于2022年,星期一outclk1:OUT STD_LOGIC;outclk2:BUFFER STD_LOGIC-输出时钟 );EN
5、D deccount;ARCHITECTURE deccount_arch OF deccount ISSIGNAL clk,divide2:STD_LOGIC;SIGNAL count:STD_LOGIC_VECTOR(3 DOWNTO 0);第9页,共170页,编辑于2022年,星期一BEGINclk=inclk XOR divide2;-inclk与divide2异或后作为模N计数器的时钟outclk1=inclk;PROCESS(clk)BEGIN IF(clkevent AND clk=1)THEN IF(count=0000)THEN第10页,共170页,编辑于2022年,星期一
6、count=preset-1;-置整数分频值N outclk2=1;ELSE count=count-1;-模N计数器减法计数 outclk2=0;END IF;END IF;END PROCESS;PROCESS(outclk2)第11页,共170页,编辑于2022年,星期一BEGIN IF(outclk2event AND outclk2=1)THEN divide2=NOT divide2;-输出时钟二分频 END IF;END PROCESS;END deccount_arch;第12页,共170页,编辑于2022年,星期一图7-2 半整数分频器外部接口第13页,共170页,编辑于20
7、22年,星期一 以上程序实现对时钟源inclk进行分频系数为N-0.5的分频,得到输出频率outclk2。preset输入端口是预置分频值N,本例中preset设为4位宽的位矢量,也即分频系数为16以内的半整数值。若分频系数大于16,需同时增大preset和count的位宽,两者的位宽则要求始终一致。本设计的外部接口如图7-2所示,程序中设置outclk1是为了方便观察输入信号的波形,以与输出信号outclk2比较。第14页,共170页,编辑于2022年,星期一 7.1.4 仿真结果 上述半整数分频器的仿真波形如图7-3所示。第15页,共170页,编辑于2022年,星期一图7-3 半整数分频器
8、仿真波形图 第16页,共170页,编辑于2022年,星期一 7.1.5 下载验证 锁定引脚时将inclk连至CLK1,preset连至K0K3,outclk1连至TESTOUT1(测试1脚),outclk2连至TESTOUT2(测试2脚),综合适配后将配置数据下载入EDA实验平台(技术资料详见附录)的FPGA中(有关CLK1等引脚在FPGA芯片引脚中的序号,请参见附录的附图1),通过改变K0K3状态观察测试1脚和测试2脚上的波形,测试结果与仿真结果一致。第17页,共170页,编辑于2022年,星期一7.2 音音 乐乐 发发 生生 器器 本设计利用可编程逻辑器件配以一个小扬声器设计了一个音乐发生
9、器,其结构如图7-4所示。本例产生的音乐选自“梁祝”片段。第18页,共170页,编辑于2022年,星期一图7-4 音乐产生器原理框图第19页,共170页,编辑于2022年,星期一 7.2.1 音名与频率的关系 音乐的十二平均率规定:每两个八度音(如简谱中的中音1与高音1)之间的频率相差一倍。在两个八度音之间,又可分为十二个半音,每两个半音的频率比为。另外,音名A(简谱中的低音6)的频率为440 Hz,音名B到C之间、E到F之间为半音,其余为全音。由此可以计算出简谱中从低音1至高音1之间每个音名的频率如表7-1所示。第20页,共170页,编辑于2022年,星期一表7-1 简谱中的音名与频率的关系
10、音名频率/Hz音名频率/Hz音名频率/Hz低音1261.63中音1523.25高音11046.50低音2293.67中音2587.33高音21174.66低音3329.63中音3659.25高音31318.51低音4349.23中音4698.46高音41396.92低音5391.99中音5783.99高音51567.98低音6440中音6880高音61760低音7493.88中音7987.76高音71975.52第21页,共170页,编辑于2022年,星期一 由于音阶频率多为非整数,而分频系数又不能为小数,故必须将计算得到的分频数四舍五入取整。若基准频率过低,则由于分频系数过小,四舍五入取整后
11、的误差较大。若基准频率过高,虽然误码差变小,但分频结构将变大。实际的设计应综合考虑两方面的因素,在尽量减小频率误差的前提下取合适的基准频率。本例中选取4 MHz的基准频率。若无4 MHz的时钟频率,则可以先分频得到4 MHz或换一个新的基准频率。实际上,只要各个音名间的相对频率关系不变,C作1与D作1演奏出的音乐听起来都不会“走调”。第22页,共170页,编辑于2022年,星期一 本例需要演奏的是“梁祝”片段,此片段内各音阶频率及相应的分频比如表7-2所示。为了减小输出的偶次谐波分量,最后输出到扬声器的波形应为对称方波,因此在到达扬声器之前,有一个二分频的分频器。表7-2中的分频比就是从4 M
12、Hz频率二分频得到的2 MHz频率基础上计算得出的。第23页,共170页,编辑于2022年,星期一表7-2 各音阶频率对应的分频值 音名分频系数初始值音名分频系数初始值低音360672124中音234054786低音551023089中音330345157低音645453646中音525515640低音740504141中音622735918中音138224369高音119116280第24页,共170页,编辑于2022年,星期一 由于最大的分频系数为6067,故采用13位二进制计数器已能满足分频要求。在表7-2中,除给出了分频比以外,还给出了对应于各个音阶频率时计数器不同的初始值。对于不同的
13、分频系数,只要加载不同的初始值即可。采用加载初始值而不是将分频输出译码反馈,可以有效地减少本设计占用可编程逻辑器件的资源,这也是同步计数器的一个常用设计技巧。对于乐曲中的休止符,只要将分频系数设为0,即初始值为213-1=8191即可,此时扬声器将不会发声。第25页,共170页,编辑于2022年,星期一 7.2.2 音长的控制 本例演奏的“梁祝”片段,最小的节拍为1/4拍。将1拍的时长定为1秒,则只需要再提供一个4 Hz的时钟频率即可产生1/4拍的时长。演奏的时间控制通过记谱来完成,对于占用时间较长的节拍(一定是1/4拍的整数倍),如2/4拍,只需将该音名连续记录两次即可。本例要求演奏时能循环
14、进行,因此需另外设置一个时长计数器,当乐曲演奏完成时,保证能自动从头开始演奏。第26页,共170页,编辑于2022年,星期一 7.2.3 演奏时音名的动态显示 如果有必要,可以通过一个数码管或LED来显示乐曲演奏时对应的音符。如用三个数码管,分别显示本例中的高、中、低音名,就可实现演奏的动态显示,且十分直观。本设计通过三个数码管来动态显示演奏时的音名,其中HIGH显示为高音区音阶(仅高音1),MED2.0显示的是中音区音阶(中音6,5,3,2,1),LOW2.0显示的是低音区音阶(低音7,6,5,3)。数码管显示的七段译码电路在此不作专门讨论。需要说明的是,七段译码电路输入为4位,而将HIGH
15、、MED、LOW用作输入时,不足4位的高位均为低电平“0”。第27页,共170页,编辑于2022年,星期一图7-5 音乐产生器外部接口第28页,共170页,编辑于2022年,星期一 7.2.4 VHDL程序 本设计的外部接口如图7-5所示,程序中定义了一个5位宽的zero4.0,这是由于实验平台上连向数码管的引脚在不赋值的情况下为高电平,这将导致显示音名错误,设置zero4.0就是要将没用到的引脚(高音的高3位、中音的高1位和低音的高1位)赋一个低电平,从而避免显示错误。第29页,共170页,编辑于2022年,星期一LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.AL
16、L;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY song IS PORT(clk_4MHz,clk_4Hz:IN STD_LOGIC;-预置计数器和乐谱产生器的时钟第30页,共170页,编辑于2022年,星期一 digit:BUFFER STD_LOGIC_VECTOR(6 DOWNTO 0);-高、中、低音数码管指示 zero:OUT STD_LOGIC_VECTOR(4 DOWNTO 0);-用于数码管高位置低 speaker:out STD_LOGIC -扬声器 );END song;ARCHITECTURE song_arch OF song IS第3
17、1页,共170页,编辑于2022年,星期一SIGNALdivider,origin:STD_LOGIC_VECTOR(12 DOWNTO 0);-13位计数值和预置值SIGNAL counter:integer range 0 to 140;-7位计数器SIGNAL count:STD_LOGIC_VECTOR(1 DOWNTO 0);-记录1/4拍SIGNAL carrier:STD_LOGIC;BEGINzero=00000;PROCESS(clk_4MHz)第32页,共170页,编辑于2022年,星期一BEGIN IF(clk_4MHzevent AND clk_4MHz=1)THEN
18、IF(divider=1111111111111)THEN carrier=1;divider=origin;ELSE divider=divider+1;carrier=0;END IF;END IF;END PROCESS;第33页,共170页,编辑于2022年,星期一PROCESS(carrier)BEGIN IF(carrierevent AND carrier=1)THEN count=count+1;-输出时钟四分频 IF count=00 THEN speaker=1;ELSE speaker=0;END IF;END IF;END PROCESS;第34页,共170页,编辑于2
19、022年,星期一PROCESS(clk_4Hz)BEGIN IF(clk_4Hzevent AND clk_4Hz=1)THEN IF(counter=140)THEN counter=0;ELSE counterdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdig
20、itdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdig
21、itdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitdigitoriginoriginoriginoriginoriginoriginoriginoriginoriginoriginorigin=1111111111111;-8191第4
22、2页,共170页,编辑于2022年,星期一 END CASE;END PROCESS;END song_arch;第43页,共170页,编辑于2022年,星期一7.2.5 仿真结果音乐发生器的仿真波形如图7-6所示。图7-6 音乐发生器仿真波形图 第44页,共170页,编辑于2022年,星期一 7.2.6 下载验证 锁定引脚时将clk_4 MHz和clk_4 Hz分别连至CLK1和CLK2,speaker接扬声器,zero4.2、digit6接一个数码管,zero1、digit5.3接一个数码管,zero0、digit2.0接另一个数码管。综合适配后将配置数据下载入EDA实验平台(技术资料详见
23、附录)的FPGA中(有关CLK1等引脚在FPGA芯片引脚中的序号,请参见附录的附图1),扬声器短接线短路(接入扬声器),即可听到MIDI音乐。第45页,共170页,编辑于2022年,星期一7.3 2FSK/2PSK信号产生器信号产生器 7.3.1 2FSK基本原理 在通信领域中,为了传送信息,一般都将原始的信号进行某种变换变成适合于通信传输的信号形式。在数字通信系统中,一般将原始信号(图像、声音等)经过量化编码变成二进制码流,称为基带信号。第46页,共170页,编辑于2022年,星期一 但数字基带信号一般不适合于直接传输。例如,通过公共电话网络传输数字信号时,由于电话网络的带宽为4 kHz以下
24、,因此数字信号不能直接在其上传输。此时可将数字信号进行调制,FSK即为一种常用的数字调制方式,由FSK调制的波形如图7-7示。第47页,共170页,编辑于2022年,星期一 FSK又称移频键控,它利用载频频率的变化来传递数字信息。数字调频信号可以分为相位离散和相位连续两种。若两个载频由不同的独立振荡器提供,它们之间相位互不相关,就称相位离散的数字调频信号;若两个频率由同一振荡信号源提供,只是对其中一个载频进行分频,这样产生的两个载频就是相位连续的数字调频信号。第48页,共170页,编辑于2022年,星期一图7-7 FSK调制的波形 第49页,共170页,编辑于2022年,星期一 7.3.2 2
25、FSK信号产生器 由于FSK为模拟信号,而FPGA只能产生数字信号,因此需对正弦信号采样并经模数变换来得到所需的FSK信号。本例由FPGA产生正弦信号的采样值。FSK信号发生器框图如图7-8所示,整个系统共分为分频器、m序列产生器、跳变检测、2:1数据选择器、正弦波信号产生器和DAC数模变换器等6部分,其中前5部分由FPGA器件完成。第50页,共170页,编辑于2022年,星期一图7-8 FSK调制信号发生器框图 第51页,共170页,编辑于2022年,星期一 1分频器 本实例中数据速率为1.2 kHz,要求产生1.2 kHz和2.4 kHz两个正弦信号。对正弦信号每周期取100个采样点,因此
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第7章 数字系统设计实例PPT讲稿 数字 系统 设计 实例 PPT 讲稿
限制150内