第二部分单样本和双样本假设检验PPT讲稿.ppt
《第二部分单样本和双样本假设检验PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《第二部分单样本和双样本假设检验PPT讲稿.ppt(74页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二部分单样本和双样本假设检验第1页,共74页,编辑于2022年,星期二A基本概念零假设检验统计决定一类错误和二类错误单侧检验和双侧检验第2页,共74页,编辑于2022年,星期二在前四章中,我们对描述性统计做了介绍。特别是通过z分数我们可以计算个体在总体分布中的位置和样本在抽样分布中的位置。换句话说,我们可以描述个体或者样本的特殊性。那么处于怎样的位置才算是特殊呢?这种特殊性有怎么来验证呢?这些问题是假设检验所要解决的问题。第3页,共74页,编辑于2022年,星期二最简单的假设检验是将一组被试与总体进行比较,且总体均数和标准差已知。举个例子,硕士研究生考试包含笔试和面试,面试在最终录取中起到了
2、很大的作用,因为导师更看重素质而不是分数。有个导师声称,他的眼光很准,他可以看一下学生的眼睛,就能找到好的学生。我们要对他的说话进行验证。第4页,共74页,编辑于2022年,星期二如果我们用智商来代表一个学生的素质(尽管可能并不合适),那么刚才的问题就变成了那个导师可以通过看学生的眼睛来判断他的智商。我们可以通过如下方式进行检验:让他通过自己的方式挑出25个学生,然后比较这些学生的智商是否真的较高。第5页,共74页,编辑于2022年,星期二被试组选择要验证该导师的说法,我们要让他选25个他认为高智商的同学,但是这种选择需要加以限制。如果该导师直接奔向基地班,那这种选择显然是无效的。可选择的办法
3、是,把学校所有学生的照片都找来,让其通过相貌来确定。这样学校的每一个学生都有相同的机会被选到,而且每一次选取独立于其他的选取。也就是遵循随机取样的原则。第6页,共74页,编辑于2022年,星期二如果该导师选出的学生的平均智商确实高于总体平均,我们能否确认他确实眼光很准呢?答案是不能。原因在于,我们随便找一个人去选,选出的学生的平均智商都不太可能等于总体平均数。从均数的抽样分布,我们可以得知,高于总体平均数的可能占50%。也就是说该导师选出的学生平均智商高于总体均数的原因可能是随机因素。第7页,共74页,编辑于2022年,星期二这时,我们可以先做出一个假设,对其进行验证:选取学生的平均智商并不显
4、著高于总体均数,其差异是随机抽样产生的,并不涉及一个特别的选择过程。这就是零假设检验。接下来,我们要做的就是随机选取25个学生测其智商,重复n次,看有多少次能选到比那个导师选取的学生平均智商更高。也就是确定其概率。第8页,共74页,编辑于2022年,星期二上述的做法会得到智商均数的一个分布,由于这个分布显示的是零假设(没有特殊操作,随机选取)为真时发生的情况,因此被称为零假设分布。在单样本检验且总体标准差已知的情况下,这个零假设分布就是均数的抽样分布。第9页,共74页,编辑于2022年,星期二通过这个零假设分布,我们可以算出选出比那个导师选择的学生组平均智商更高的概率是多少。通过z分数来计算,
5、比如该导师选取的25个学生平均智商为104,总体均数为100,标准差为15.那么查表可知,对应的概率为0.0918。这个概率是通过随机选择而得到该分数的概率,被称为p值。第10页,共74页,编辑于2022年,星期二统计决定算出其概率之后,我们要做的是做出个统计推断。因为推断的做出是基于概率的,如果要得到该导师的选择是无效的,也就是说该组学生的平均智商高于总体是随机抽样造成的,我们需要冒一定的风险。小概率事件也时有发生。我们需要承担的这个风险量被称为水平。是我们愿意承担的零假设成立的概率。如果实际算出的概率要低于,那么我将会拒绝零假设。第11页,共74页,编辑于2022年,星期二心理学中,每20
6、次中有1次机会能抽到的水平被认为是能接受的最大风险值。也就是0.05.如果采用0.05的水平,且实验p值小于0.05,那么我们可以再0.05的显著水平上拒绝零假设。也就说,那位导师的眼光显著好于一般人。如果p大于0.05,我们会认为那位导师的挑选完全无效吗?一般情况下,我们会说没能拒绝零假设(证据不足)。这是数学家Fisher的观点:认为我们要么拒绝零假设,要么保留做出决定的权利。而Neyman和Pearson则认为,应该提出与零假设互补的备择假设,因此拒绝其中一个就表明倾向于接受另一个。第12页,共74页,编辑于2022年,星期二在上边的例子中,我们把智商转换成了z分数,然后进行统计检验。这
7、种情况下,z分数被称为检验统计量。(后边我们还会讲到t分布)。检验统计量的分布被认为是零假设分布。Z分数越大,p值越小,差异越显著。第13页,共74页,编辑于2022年,星期二一类错误和二类错误前面提到,如果p值远小于0.05,我们拒绝了零假设,但我们还是要承担一定的风险。比如,我们通过考试来评估学生能力,90分对应着p=0.05,那么我们则会认为90分以上的学生为好学生。但是如果一些学生参加了考试辅导,老师帮他们赌到了一些考试题,使得他们平均分高于90。在统计检验中,我们发现p小于0.05,那我们会得到结论,这些同学能力高于一般水平。这时,我们显然犯了一个错误。也就是我们拒绝了这些学生水平的
8、一般的假设(零假设),而零假设才是真的,这种错误称为一类错误。虚报、存伪第14页,共74页,编辑于2022年,星期二如果另一组学生平时学习很好,但是由于考试当天集体食物中毒,拉肚子,导致考试成绩不高,p大于0.05,统计推断结果接受零假设,这些学生成绩一般。这种情况下,我们就犯了二类错误,即零假设为假而我们却接受了它。漏报、去真研究者的决定实际情况零假设为真零假设非真接受零假设正确决定p=1-二类错误p=拒绝零假设一类错误p=正确决定p=1-第15页,共74页,编辑于2022年,星期二一类错误会产生误导。比如你的实验结果证明你的某种训练可以提高注意力,而注意力的集中有利于学习成绩的提高。那么别
9、人就可能认为你的训练有利于提高学习成绩。但是如果在你的实验中犯了一类错误,那么其他人用你的训练方法时并不能提高学生的成绩。降低一类错误的方法就是多次重复实验或者测量,反复证明训练对注意力提高的有效性。第16页,共74页,编辑于2022年,星期二另一种降低一类错误的方法就是选取更低的水平。但是降低水平会导致更多的二类错误。水平人为地设为0.05实际上在一类错误和二类错误的可能负性后果之间寻求一种妥协。在某些特殊的研究中,比如治疗癌症的药物研发中,应选取较大的值。因为这种情况下犯二类错误的后果是相当严重的。第17页,共74页,编辑于2022年,星期二单侧检验和双侧检验如果前面提到的那位导师挑选的学
10、生平均智商是90,这时我们不会拒绝零假设。那此时我们是不是就接受零假设,认为这个导师眼光一般呢?我们不能,因为还有另一种可能,该导师眼光很差。这样问题就修正为要验证该导师眼光特殊(很好或者很差)。第18页,共74页,编辑于2022年,星期二在之前的检验中,我们要验证该导师的眼光很好,用的单侧(单尾)检验,也就是在Z大于0的一侧。现在的问题就变成了双侧(双尾)检验,也就是要看分布的两端。计算样本z分数,单侧和双侧无区别,差别在于p值,双侧是单侧的2倍。第19页,共74页,编辑于2022年,星期二在刚才的例子中,我们犯了一个错误,那就是我们先假设那个导师眼光好,用了单侧检验,发现不能拒绝零假设;然
11、后我们改变主意做了双侧检验。这样做增大了一类错误的概率。单侧的0.05加上双侧中另一侧的0.025。正确的做法是在做假设检验之前确定是做单侧(操作导致更好或者更差)检验,还是双侧检验(操作会引起差异,不管好坏)。第20页,共74页,编辑于2022年,星期二B基本统计过程提出假设选择统计检验和显著性水平选择样本和收集数据求拒绝区域计算检验统计量做出统计推断解释结果单样本z检验的前提条件第21页,共74页,编辑于2022年,星期二提出假设首先给定一个希望推翻的零假设。以IQ作为因变量,总人口的平均IQ为100零假设H0:=100备择假设HA:双侧:100,单侧;100或者t(0.05),拒绝零假设
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 部分 样本 假设检验 PPT 讲稿
限制150内