天体物理学时间幻灯片.ppt
《天体物理学时间幻灯片.ppt》由会员分享,可在线阅读,更多相关《天体物理学时间幻灯片.ppt(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、天体物理学时间1第1页,共35页,编辑于2022年,星期五一.时间系统二.天体坐标系三.坐标转换四.等天顶角方法中的坐标转换和位置修正2第2页,共35页,编辑于2022年,星期五一.时间系统天文学上应用四种不同的时间系统:世界时、历书时、力学时和恒星时。每一种时间系统都有一个基本历元和一个基本的时间间隔度量体系。它们都采用“日”做为基本的时间单位,每日包含等长的24小时,每小时包含等长的60分钟,每分钟包含等长的60秒,亦即,1d=24h=1440m=86400s。3第3页,共35页,编辑于2022年,星期五1.世界时(UniversalTime,T)世界时是根据地球相对于太阳自转导出的时间系
2、统。地球自转的速度并不是均匀不变的,而是具有下列三种变化:长长期期变变化化由于潮汐摩擦力,地球自转速度逐渐变慢,日的长度每百年大约增加0.0016秒。季季节节变变化化地球表面上的气团随季节而移动,使地球自转速度产生季节性变化。在春季自转速度较慢,秋季较快,一年里的日的长度约有0.001秒的变化。此外,还有一些影响较小的其他周期性变化。不不规规则则变变化化这种变化表现为地球自转速度时而加快,时而变慢,其物理机制尚不清楚。4第4页,共35页,编辑于2022年,星期五这三种变化中,长期变化不太明显,只在长时期的积累后才产生影响;不规则变化比较大,且不能预先估计;季节变化也相当大,但每年变化的规律相当
3、固定,因此可以预先根据经验公式外推。另外,世界时的测定与测站子午圈的位置有关,地极位移引起子午圈的的变位也能影响测定的世界时的均匀性。1956年起,国际上把世界时分为三种:通过天文观测直接测定的世界时,记为UT0;加以地极位移引起子午圈变位的修正得到的相对于平均极的子午圈的世界时,记为UT1;再修正用经验公式外推得出的地球自转速度周年变化的影响,得出另一种相对地说比较均匀的世界时,记为UT2。5第5页,共35页,编辑于2022年,星期五尽管如此,世界时UT2仍然包含有地球自转速度的长期变化和不规则变化的影响,不是绝对均匀的。天文年历中,根据力学理论计算天体位置所用的时间是均匀的时间,世界时不符
4、合这一要求。6第6页,共35页,编辑于2022年,星期五2.历书时(EphemerisTime,ET)地球自转速率的不规则性使得世界时不适合于观测和理论的比较,1960年起,各国天文学年历引入一种以太阳系内天体公转为基准的时间系统,称为历书时。它在当时被认为是均匀的。历书时用1900年年首的平黄经和平均运动来定义,历书秒 定 义 为1900年1月0日 12hET瞬 时 回 归 年 长 度 的31556925.9747分之一,而把1900年初太阳几何平黄经等于2794148.04时刻作为基本历元,即1900年1月0日12hET(1900年1月0.5天)。7第7页,共35页,编辑于2022年,星期
5、五但是,历书时不论从理论上还是实践上都是不完善的,它不能做为真正的均匀时间标准。原因如下:原则上讲,每一种基本历元表都可以有其自身的“历书时”,例如由观测月亮得出的历书时与用太阳运动定义的历书时就不一致;历书时定义中关联到一些天文学常数,天文常数系统的改变就会导致历书时的不连续;实际测定历书时的精度不高,而且提供结果比较迟缓,不能及时满足需要高精度时间的部门的要求。8第8页,共35页,编辑于2022年,星期五3.国际原子时(TAI)1967年第十三届国际度量衡会议引入新的秒的定义,即Cs133原子基态的两能级间的跃迁辐射的9192631770周期所经历的时间作为一秒的长度,成为国际制秒(SI秒
6、),由这种时间单位确定的时间系统成为国际原子时(TAI)。国际原子时时刻起算点取为1958年1月1日0hUT,此时原子时与世界时极为接近,仅差0.0039s。国际原子时由原子钟提供,它是目前用于天文上最精确的时间,而且可以迅速得到。国际原子时自1972年1月1日正式启用,但对1956-1971年期间原子时可以通过外推得出,因为1956年起国际上已开始建立原子钟系统。9第9页,共35页,编辑于2022年,星期五4.协调时(UTC)由于世界时有长期变慢的趋势,世界时时刻将日益落后于原子时。为了避免发播的原子时与世界时产生过大偏离,1972年起国际上发播时号多用协调时(UTC),其时间单位为原子时秒
7、长,其时刻与世界时UT1的偏离保持不超过0.9秒,方法是在年终或年底进行跳秒,即每次调整一秒,调整前授时台将预先通知各应用部门。10第10页,共35页,编辑于2022年,星期五5.力学时鉴于历书时的严重缺点,1976年国际天文协会从1984年起采用力学时取代历书时。当前天文学中常用的力学时分两种:相对于太阳系质量中心的运动方程组以及由此得出的历表,引数用太阳系力学时表示,记为TDB;用于地心视位置历表的引数为地球力学时,记为TDT。太阳系力学时和地球力学时可以认为是历书时在日心和地心坐标系中的继承。11第11页,共35页,编辑于2022年,星期五地球力学时可以认为是在国际原子时的基础上建立的时
8、间系统。规定1977年1月1日0h00m00sTAI瞬刻,对应地球力学时为1977年1月1.00003725日(即1日0h00m32s.184),力学时的基本单位为日,包含86400国际制秒。由地球力学时定义可知:TDT=TAI32.184sTDT对TAI时刻补偿值32.184s正好选取原子时试用期间历书时ET与原子时TAI之差的估算值,同时国际制秒秒长是用历书时秒量度铯原子钟频率的结果,所以地球力学时能与过去使用的历书时相衔接,而且可以把旧历表中的引数历书时改为地球力学时继续使用。12第12页,共35页,编辑于2022年,星期五6.恒星时(SiderealTime)恒星时是地球相对于恒星自转
9、导出的时间系统。若不计地球自转速率中的起伏和极移的微小影响,地方恒星时是春分点时角。地方视恒星时是瞬时真春分点时角,地方平恒星时是瞬时平春分点时角。格林尼治地理子午圈上(即地理经度=0处)的恒星时称为格林尼治恒星时。视或平地方恒星时与相应的格林尼治恒星时之间的关系为:地方恒星时=格林尼治恒星时+其中是观察者的经度,向东计量为正。13第13页,共35页,编辑于2022年,星期五由于地球在自转的同时还在它的周年轨道上绕太阳公转使得一个回归年(即太阳连续两次经过春分点的时间间隔)包含的视恒星日要比太阳日多一日(即366.2422与365.2422)。恒星时的基本历元是1900年1月0日12h(1月0
10、.5天)的瞬间,其中小时以平恒星时单位计量。14第14页,共35页,编辑于2022年,星期五7.儒略日期(JulianDate)儒略日数和儒略日期是一种从一个基本历元起消逝的日期进行连续计数的简单方法。这个历元选择在过去的历史上足够远,使得处理天文观测时不致于发生负的儒略日期。历元是公元前4713年1月1日12h,其中小时是以平太阳时计量的。在这个瞬间的儒略日期正好为0日,世界时的基本历元1900年1月1日12hUT对应儒略日期为2415020。在现代工作中有时出现约化儒略日期(ModifiedJulianDate,MJD):MJD=JD2400000.5约化儒略日期是从1858年11月17日
11、0hUT起算的。儒略世纪:包含36525个儒略日。15第15页,共35页,编辑于2022年,星期五二.天体坐标系天文学中普遍应用的坐标系是球面坐标系和直角坐标系,前者是从天球的直觉形状和缺乏天体距离的知识自然产生出来的;后者更适合解决理论天文学的问题及表示包含坐标系转换的计算公式。每一种球面坐标系均以一个基本圈(或参考圈)和这个圈上的一个基本点为标志。一种特定坐标系的名称就取自基本圈,例如地平、赤道、黄道、银道坐标系的基本圈分别为天文地平、天赤道、黄道和银道。为了指明坐标系原点的位置,需要使用一个附加的修饰词。原点位于观测者的坐标系称为站心坐标系,位于地球中心成为地心坐标系,位于太阳中心称为日
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 天体物理学 时间 幻灯片
限制150内