集合论与图论精选文档.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《集合论与图论精选文档.ppt》由会员分享,可在线阅读,更多相关《集合论与图论精选文档.ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、集合论与图论本讲稿第一页,共二十二页2第三章 目录第3-1讲 集合的概念和集合的运算第3-2讲 笛卡儿积与关系第3-3讲 复合关系、逆关系与闭包运算第3-4讲 等价关系第3-5讲 序关系本讲稿第二页,共二十二页3第3-1讲 集合的概念和运算1.集合的概念2.集合的表示3.集合间的关系4.幂集5.集合的运算6.集合运算的性质7.课堂练习8.第3-1讲 作业本讲稿第三页,共二十二页41、集合的概念n将一些确定的、彼此不同的事物的全体称之为集合。对于给定的集合和事物,应能判断这个特定的事物是否属于给定的集合。集合中的事物称为该集合的元素。通常,用大写的英文字母表示集合,用小写英文字母表示集合的元素。
2、例如,习惯上用表示非负整数的集合,用表示有理数集合,表示实数集合等等。如果是集合的元素,记作,读作“属于”。如不是的元素,记作 b,读作“不属于”,它等价于它等价于 (bsbs)。若一个集合的元素个数是有限的,则称为有限集,否则称为无限集。本讲稿第四页,共二十二页52、集合的表示n列举法:列出集合的所有元素,并用花括号括起来,元素之间用逗号隔开。例如:S=e1,e2,en (具有n个元素的有限集)a,b,c,d(a,b,c,d是该集合的元素)0,1,2,3,.(N是非负整数集)在一个集合中,元素是彼此不同的,相同的元素被认为是一个元素,而且元素之间没有次序关系,例如集合1,2,3,3,1,2和
3、3,3,1,2被视为同一个集合。n叙述法(或描述法)用谓词概括出集合中元素的特性,以确定集合的元素。Sx|(x),如果(e)为真,那麽eS,否则eS。例如,设Ax|x3x8,则A4,5,6,7,8。本讲稿第五页,共二十二页62、集合的表示(续)n空集 定义1 不含任何元素的集合叫空集,记作。x|P(x)P(x),P(x)是任意谓词。例如,A=xRx210是空集,式中表示实数集合。n全集 定义2 在研究某一问题时,如果所有涉及的集合都是某一集合的部分元素组成的,则称该集合为全集,记作。即 x|P(x)P(x)。(P(x)是任意谓词)显然,全集的概念相当于论域,它是一个相对概念。本讲稿第六页,共二
4、十二页73、集合间的关系n两个两个集合相等集合相等,当且仅当它们有相同的成员。,当且仅当它们有相同的成员。集合与相等,记作。集合与相等,记作。集合与不相等,记作集合与不相等,记作。n定义 给定集合和,如果中每个元素都是中的元素,则称为的子集,记作 或,读作“包含于”或“包含”。如果且,则称为的真子集,记作。AB (x)(xAxB)AB (x)(xAxB)(x)(xBxA)按按子子集集的的定定义义,对对于于任任何何集集合合A A、B B、C C都都有有A A A A(自自反反性性),(A(A B)(BB)(B C)C)(A(A C)(C)(传递性传递性)本讲稿第七页,共二十二页83、集合间的关系
5、(续1)n定理 设设、为为两两个个集集合合,当当且且仅仅当当 且且。即即(AB)A BB A。证明:两个集合相等,则它们有相同的元素。(AB)(x)(xAxB)(x)(xBxA)(AB)(BA)。反之,若(AB)(BA),如果AB,则A与B的元素不完全相同。设xA但xB,这与AB矛盾;或xB但xA,这与BA矛盾,故A与B的元素必相同,即AB。n 定理 空集是任意集合的子集。空集是任意集合的子集。证明:任给集合,是空集。则(x)(xxA)永真。这是因为条件式的前件(x)永假,所以该条件式对一切皆为真。按子集的定义,A为真。本讲稿第八页,共二十二页93、集合间的关系(续2)例1 证明对于任何集合证
6、明对于任何集合A A、B B、C C都有都有 (A(A B)(BB)(B C)C)(A(A C)C)证:证:(A(A B)(BB)(B C)C)(x)(xAxB)(x)(xAxB)(x)(xBxC)x)(xBxC)(x)x)((xAxB)(xBxC)(xAxB)(xBxC))(x)(xAxC)x)(xAxC)A A C C例2 确定下列命题的真值确定下列命题的真值 ;。解:解:、为真;为真;(因为空集是任何集合的子集,所以(因为空集是任何集合的子集,所以、为真。)为真。)为假。(因为空集不含任何元素。)为假。(因为空集不含任何元素。)本讲稿第九页,共二十二页103、集合间的关系(续3)例3 证
7、明证明空集是唯一的证:假定证:假定1 1和和2 2为二空集。为二空集。由定理由定理2 2,1 1 2 2,2 2 1 1。再根据定理再根据定理1 1,1 12 2 。例4 设集合设集合a,b,c,写出它的所有可能的子集。,写出它的所有可能的子集。解:集合解:集合a,b,ca,b,c的所有可能的子集是:的所有可能的子集是:S0=,S1=a,S2=b,S3=c,S4=a,b,S5=a,c,S6=b,c,S7=a,b,c。本讲稿第十页,共二十二页114、幂集n定义 集合的所有子集构成的集合叫的幂集,记作(A)。根据定义,根据定义,(A)=X|X A。例如。例如,设设a,b,c,a,b,c,则则 (A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 集合论 精选 文档
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内