新苏教出版六学年数学上册知识点归纳.doc
《新苏教出版六学年数学上册知识点归纳.doc》由会员分享,可在线阅读,更多相关《新苏教出版六学年数学上册知识点归纳.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,新苏教版六年级数学上册知识点总结(一)长方体和正方体 长方体和正方体的特征:长方体和正方体的表面积:概念:长方体或正方体6个面的总面积,叫做它们的表面积 计算公式:长方体表面积=(长宽+长高+宽高)2或S表=(aXb+aXc+bxc)x2 正方体表面积=棱长棱长6或S表=axax6=6a2注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。 体积(容积)单位进率换算:1立方米=1000立方分米 1立方分米=1000立方厘米1m3=1000dm3 1dm3=1000cm31升=1000毫升 1立方分米=1升 1立方厘米=1毫升 1L=1000mL 1dm3=1L 1cm3=1mL
2、 长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。 计算公式:长方体体积公式=长宽高 或 V=axbxh 正方体体积公式=棱长棱长棱长 或 V=axaxa=a3 长方体和正方体的体积=底面积高 或 VS底h(二)分数乘法分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。或者先将整数与分数的分母进行约分,再应用前面计算法则。注:【任何整数都可以看作为分母是1的分数】 2.求一个数的几分之几是多少,可以用乘法计算。3.解题时可以根据表示几分之几的条件,确定单位1的
3、量,想单位1的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。 分数与分数相乘及连乘:1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。2.分数连乘:通过几个分数的分子与分母直接约分再进行计算3.一个数与比1小的数相乘,积小于原数;一个数与比1大的数相乘,积大于原数。(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。例如:655表示求5个65的和是多少? 1/35表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。例如:1/34/7表示求1/3的4/7是多少。43/8表示求4
4、的3/8是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有1111=121;1313=169;1717=289;1919=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)(三)、 乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。一个数(0除外)乘小于1的数(0
5、除外),积小于这个数。一个数(0除外)乘1,积等于这个数。(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律: a b = b a乘法结合律: ( a b )c = a ( b c )乘法分配律: ( a + b )c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。2、找单位“1”: 单位“1” 在分率句中分率的前面;或在“占”、“是”、
6、“比”“相当于”的后面。3、写数量关系式的技巧:(1)“的” 相当于 “” ,“占”、“相当于”“是”、“比”是 “ = ”(2)分率前是“的”字:用单位“1”的量分率=具体量例如:甲数是20,甲数的1/3是多少?列式是:201/34、看分率前有没有多或少的问题;分率前是“多或少”的关系式:(比少):单位“1”的量(1-分率)=具体量;例如:甲数是50,乙数比甲数少1/2,乙数是多少?列式是:50(1-1/2)(比多):单位“1”的量(1+分率)=具体量例如:小红有30元钱,小明比小红多3/5,小红有多少钱?列式是:50(1+3/5)3、求一个数的几倍是多少:用 一个数几倍;4、求一个数的几分
7、之几是多少: 用一个数几分之几。5、求几个几分之几是多少:用几分之几个数6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:(1)、单位“1”的量(1-分率)=另一个部分量(建议用)(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量三、倒数1、倒数的意义: 乘积是1的两个数互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、
8、求小数的倒数: 把小数化为分数,再求倒数。3、 1的倒数是1; 因为11=1;0没有倒数,因为0乘任何数都得0,(分母不能为0)4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。5、运用,a2/3=b1/4求a和b是多少。把a2/3=b1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。1、分数除法的意义:乘法: 因数 因数 = 积除法: 积 一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。例如:1/23/5意义是:已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。2、分数除法的计算法则:除以
9、一个不为0的数,等于乘这个数的倒数。3、分数除法比较大小时的规律:(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。“ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。二、分数除法解决问题1,解法:(1)方程: 根据数量关系式设未知量为X,用方程解答。解:设未知量为X (一定要解设),再列方程 用 X分率=具体量例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。列方程为:X1/3=20(2)算术(用除法):单位“1”的量未知用除法
10、:即已知单位“1”的几分之几是多少,求单位“1”的量。分率对应量对应分率 = 单位“1”的量例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:201/32、看分率前有没有比多或比少的问题;分率前是“多或少”的关系式:(比少):具体量 (1-分率)= 单位“1”的量;例如:桃树有50棵,比苹果树少1/6,苹果树有多少棵。列式是:50(1-1/6)(比多):具体量 (1+分率)= 单位“1”的量例如:一种商品现在是80元,比原价增加了1/7,原价多少?列式是:80(1+1/7)3、求一个数是另一个数的几分之几是多少: 用一个数除以另一个数,结果
11、写为分数形式。例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。列式是:1520=15/20=3/44、求一个数比另一个数多几分之几的方法:用两个数的相差量单位“1”的量 =分数即求一个数比另一个数多几分之几:用(大数小数) 另一个数(比那个数就除以那个数),结果写为分数形式。例如:5比3多几分之几?(53)3=2/3求一个数比另一个数少几分之几:用(大数小数) 另一个数(比那个数就除以那个数),结果写为分数形式。例如:3比5少几分之几?(53)5=2/5说明:多几分之几不等于少几分之几,因为单位一不同。5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1效率和,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新苏教 出版 学年 数学 上册 知识点 归纳
限制150内