【备战2013】高考数学 5年高考真题精选与最新模拟 专题10 圆锥曲线 文.doc
《【备战2013】高考数学 5年高考真题精选与最新模拟 专题10 圆锥曲线 文.doc》由会员分享,可在线阅读,更多相关《【备战2013】高考数学 5年高考真题精选与最新模拟 专题10 圆锥曲线 文.doc(68页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【备战2013】高考数学 5年高考真题精选与最新模拟 专题10 圆锥曲线 文【2012年高考真题精选】1.【2012高考新课标文4】设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为( ) 2.【2012高考新课标文10】等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为( ) 3.【2012高考山东文11】已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为 (A) (B) (C)(D)【答案】D 【解析】抛物线的焦点 ,双曲线的渐近线为,不妨取,即,焦点到渐近线的距离为,即,所以双曲线的离心率为,所以,所以,所以抛
2、物线方程为,选D.4.【2012高考全国文5】椭圆的中心在原点,焦距为,一条准线为,则该椭圆的方程为(A) (B) (C) (D) 5.【2012高考全国文10】已知、为双曲线的左、右焦点,点在上,则(A) (B) (C) (D) 6.【2012高考浙江文8】 如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点。若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A.3 B.2 C. D. 7.【2012高考四川文9】已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。若点到该抛物线焦点的距离为,则( )A、 B、 C、 D、 8.【2012高考四川文11】方程中的
3、,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A、28条 B、32条 C、36条 D、48条 【答案】B【解析】本题可用排除法,5选3全排列为60,这些方程所表示的曲线要是抛物线,则且,,要减去,又时,方程出现重复,重复次数为4,所以不同的抛物线共有60-24-4=32条.故选B.9.【2012高考上海文16】对于常数、,“”是“方程的曲线是椭圆”的( )A、充分不必要条件 B、必要不充分条件 C、充分必要条件 D、既不充分也不必要条件【答案】B.【解析】0,或。方程=1表示的曲线是椭圆,则一定有故“0”是“方程=1表示的是椭圆”的必要不充分条件。10.【2012高考江西文
4、8】椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为A. B. C. D. 11.【2012高考湖南文6】已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为A-=1 B.-=1 C.-=1 D.-=1w#ww.zz&st又,C的方程为-=1.12.【2102高考福建文5】已知双曲线-=1的右焦点为(3,0),则该双曲线的离心率等于A B C D 13.【2012高考四川文15】椭圆为定值,且的的左焦点为,直线与椭圆相交于点、,的周长的最大值是12,则该椭圆的离心率是_。 【答案】,【
5、解析】当直线过右焦点时的周长最大,最大周长为;,即,14.【2012高考辽宁文15】已知双曲线x2 y2 =1,点F1,F2为其两个焦点,点P为双曲线上一点,若P F1P F2,则P F1+P F2的值为_.【答案】【解析】由双曲线的方程可知15.【2012高考江苏8】(5分)在平面直角坐标系中,若双曲线的离心率为,则的值为 【答案】2。【解析】由得。 ,即,解得。16.【2012高考陕西文14】右图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米. 17.【2012高考重庆文14】设为直线与双曲线 左支的交点,是左焦点,垂直于轴,则双曲线的离心率 【答案】【
6、解析】由得,又垂直于轴,所以,即离心率为。18.【2012高考安徽文14】过抛物线的焦点的直线交该抛物线于两点,若,则=_。【答案】【解析】设及;则点到准线的距离为,得: 又。19.【2012高考天津文科11】已知双曲线与双曲线有相同的渐近线,且的右焦点为,则 20.【2012高考江苏19】(16分)如图,在平面直角坐标系中,椭圆的左、右焦点分别为,已知和都在椭圆上,其中为椭圆的离心率(1)求椭圆的方程;(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P(i)若,求直线的斜率;(ii)求证:是定值【答案】解:(1)由题设知,由点在椭圆上,得,。由点在椭圆上,得椭圆的方程为。 由得,
7、 。 是定值。【解析】(1)根据椭圆的性质和已知和都在椭圆上列式求解。 (2)根据已知条件,用待定系数法求解。21.【2012高考广东文20】(本小题满分14分)在平面直角坐标系中,已知椭圆:()的左焦点为,且点在上.(1)求椭圆的方程;(2)设直线同时与椭圆和抛物线:相切,求直线的方程. 22.【2012高考山东文21】 (本小题满分13分)如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8. ()求椭圆M的标准方程;() 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值. 23.【2012高考浙江文22】本题满分14分)如图,在直角坐标系
8、xOy中,点P(1,)到抛物线C:=2px(P0)的准线的距离为。点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分。(1)求p,t的值。(2)求ABP面积的最大值。【解析】(1)由题意得,得.(2)设,线段AB的中点坐标为 24.【2012高考湖南文21】(本小题满分13分)在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.()求椭圆E的方程;()设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.【解析】()由,得.故圆的圆心为点从而可设椭圆的方程为其焦距为,由题
9、设知故椭圆的方程为:()设点的坐标为,的斜分率分别为则的方程分别为且由与圆相切,得,即同理可得.从而是方程的两个实根,于是且由得解得或由得由得它们满足式,故点的坐标为,或,或,或.【2011年高考真题精选】1. (2011年高考海南卷文科9)已知直线过抛物线C的焦点,且与C的对称轴垂直,与C交于A,B两点,|AB|=12,P为C的准线上一点,则的面积为( )A.18 B.24 C.36 D.48【答案】C【解析】因为AB过抛物线的焦点且与对称轴垂直,所以线段AB是抛物线的通径,长为,所以,又点P到AB的距离为焦参数,所以的面积为,故选C.2. (2011年高考安徽卷文科3) 双曲线的实轴长是(
10、A)2 (B) (C) 4 (D) 4 3.(2011年高考浙江卷文科9)已知椭圆(ab0)与双曲线有公共的焦点,的一条渐近线与的长度为直径的圆相交于两点.若恰好将线段三等分,则(A) (B) (C) (D) 【答案】 C【解析】:由恰好将线段AB三等分得由又,故选C.4. (2011年高考天津卷文科6)已知双曲线的左顶点与抛物线的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为A. B. C. D. 5. (2011年高考福建卷文科11)设圆锥曲线I的两个焦点分别为F1,F2,若曲线I上存在点P满足:= 4:3:2,则曲线I的离心率等于A. B.
11、 C. D. 【答案】A【解析】由:= 4:3:2,可设,若圆锥曲线为椭圆,则,;若圆锥曲线为双曲线,则,故选A.6. (2011年高考陕西卷文科2)设抛物线的顶点在原点,准线方程为,则抛物线的方程是 (A) (B) (C) (D) 【答案】C【解析】设抛物线方程为,则准线方程为于是故选C7(2011年高考湖南卷文科6)设双曲线的渐近线方程为则的值为( )A4 B3 C2 D1答案:C解析:由双曲线方程可知渐近线方程为,故可知。8(2011年高考湖北卷文科4)将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则A.B.C.D.答案:C解析:设满足条件的正三角形的三顶点为A、B
12、、F,依题意可知,A、B必关于x轴对称,故设 ,则,则,故由抛物线定义可得,则由,解得,由判别式计算得0,故有两个正三角形,可知选C.9.(2011年高考辽宁卷文科7)已知 F 是抛物线 的焦点,AB是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为 (A) (B)1 (C) (D) 10. (2011年高考四川卷文科14)双曲线上一点P到双曲线右焦点的距离是4,那么点P到左准线的距离是 . 11.(2011年高考全国卷文科16)已知F1、F2分别为双曲线C: - =1的左、右焦点,点AC,点M的坐标为(2,0),AM为F1AF2的平分线则|AF2| = .已知F1、F
13、2分别为双曲线C: - =1的左、右焦点,点AC,点M的坐标为(2,0),AM为F1AF2的平分线则|AF2| = .【答案】6【解析】,由角平分线的性质得又 12.(2011年高考山东卷文科22)(本小题满分14分)在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点.()求的最小值;()若,(i)求证:直线过定点;(ii)试问点,能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.线的斜率为,又因为,所以解得或6,又因为,所以舍去,即,此时k=1,m=1,E,AB的中垂线为2x+2y+1=0,圆心坐标为,G(,圆
14、半径为,圆的方程为.综上所述, 点,关于轴对称,此时的外接圆的方程为.13. (2011年高考江西卷文科19) (本小题满分12分)已知过抛物线的焦点,斜率为的直线交抛物线于()两点,且(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值 14. (2011年高考福建卷文科18)(本小题满分12分)如图,直线l :y=x+b与抛物线C :x2=4y相切于点A。(1) 求实数b的值;(11) 求以点A为圆心,且与抛物线C的准线相切的圆的方程【解析】(I)由得 ()因为直线与抛物线C相切,所以,解得.(II)由(I)可知,故方程()即为,解得,将其代入,得y=1,故点A(2,1).
15、因为圆A与抛物线C的准线相切,所以圆心A到抛物线C的准线y=-1的距离等于圆A的半径r,即r=|1-(-1)|=2,所以圆A的方程为.15(2011年高考湖南卷文科21)已知平面内一动点到点F(1,0)的距离与点到轴的距离的等等于1(I)求动点的轨迹的方程;(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点,与轨迹相交于点,求的最小值 因为,所以的斜率为设则同理可得故当且仅当即时,取最小值1616. (2011年高考陕西卷文科17)(本小题满分12分)设椭圆C: 过点(0,4),离心率为()求C的方程;()求过点(3,0)且斜率为的直线被C所截线段的中点坐标 17. (2011年高考
16、四川卷文科21)(本小题共12分)过点的椭圆的离心率为,椭圆与轴交于两点、,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点.(I)当直线过椭圆右焦点时,求线段的长;()当点P异于点B时,求证:为定值. 18.(2011年高考全国卷文科22) (本小题满分12分)(注意:在试题卷上作答无效)已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交与A、B两点,点P满足()证明:点P在C上;()设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.则的中垂线为:则的中垂线与的中垂线的交点为到直线的距离为即、四点在同一圆上。19. (2011年高考湖北卷文科21
17、) (本小题满分13分)平面内与两定点连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所在所面的曲线C可以是圆、椭圆或双曲线.()求曲线C的方程,并讨论C的形状与m的位置关系;()当m=-1时,对应的曲线为C1:对给定的,对应的曲线为C2,设F1、F2是C2的两个焦点,试问:在C1上,是否存在点N,使得F1NF2的面积,若存在,求的值;若不存在,请说明理由.本小题主要考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想.解析:(1)设动点为M,其坐标(x, y). 当时,由条件可得即又的坐标满足 故依题意,曲线C的方程为 当时,曲线C的方程为,C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战2013 【备战2013】高考数学 5年高考真题精选与最新模拟 专题10 圆锥曲线 备战 2013 高考 数学 年高 考真题 精选 最新 模拟 专题 10
限制150内