【2年中考1年模拟】2016年中考数学 专题37 阅读理解问题试题(含解析).doc
《【2年中考1年模拟】2016年中考数学 专题37 阅读理解问题试题(含解析).doc》由会员分享,可在线阅读,更多相关《【2年中考1年模拟】2016年中考数学 专题37 阅读理解问题试题(含解析).doc(60页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题37 阅读理解问题解读考点知识点名师点晴新定义问题新概念问题结合具体的问题情境,解决关于新定义的计算、猜想类问题阅读理解类问题图表问题结合统计、方程思想解决相关的图表问题材料阅读题根据所给的材料,解决相关的问题2年中考【2015年题组】1(2015南宁)对于两个不相等的实数a、b,我们规定符号Maxa,b表示a、b中的较大值,如:Max2,4=4,按照这个规定,方程的解为()A B C或 D或1【答案】D考点:1解分式方程;2新定义;3综合题2(2015河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”如图,直线l:与x轴、y轴分别交于A、B,OAB=30,点P在x轴上,P与
2、l相切,当P在线段OA上运动时,使得P成为整圆的点P个数是()A6 B8 C10 D12【答案】A考点:1切线的性质;2一次函数图象上点的坐标特征;3新定义;4动点型;5综合题3(2015钦州)对于任意的正数m、n定义运算为:mn=,计算(32)(812)的结果为()A B2 C D20【答案】B【解析】试题分析:32,32=,812,812=,(32)(812)=()=2故选B考点:1二次根式的混合运算;2新定义4(2015泰安)若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数
3、”的概率是()A B C D【答案】C【解析】试题分析:列表得:考点:1列表法与树状图法;2新定义5(2015宜宾)在平面直角坐标系中,任意两点A(,),B(,),规定运算:AB=(,);AB=;当且时,A=B,有下列四个命题:(1)若A(1,2),B(2,1),则AB=(3,1),AB=0;(2)若AB=BC,则A=C;(3)若AB=BC,则A=C;(4)对任意点A、B、C,均有(AB)C=A(BC)成立,其中正确命题的个数为()A1个 B2个 C3个 D4个【答案】C考点:1命题与定理;2点的坐标;3新定义;4阅读型6(2015宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABC
4、D是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:ACBD;AO=CO=AC;ABDCBD,其中正确的结论有()A0个 B1个 C2个 D3个【答案】D【解析】试题分析:在ABD与CBD中,AD=CD,AB=BC,DB=DB,ABDCBD(SSS),故正确;ADB=CDB,在AOD与COD中,AD=CD,ADB=CDB,OD=OD,AODCOD(SAS),AOD=COD=90,AO=OC,ACDB,故正确;故选D考点:1全等三角形的判定与性质;2新定义;3阅读型7(2015崇左)4个数a、b、c、d排列成,我们称之为二阶行列式,规定它的运算法则为:若,则x=_【
5、答案】1考点:1解一元一次方程;2新定义8(2015龙岩)我们把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点(如矩形的对角线交点是矩形的一个腰点),则正方形的腰点共有 个【答案】9【解析】试题分析:如图,正方形一共有9个腰点,除了正方形的中心外,两条与边平行的对称轴上各有四个腰点故答案为:9考点:1正方形的性质;2等腰三角形的判定;3新定义;4综合题9(2015达州)对于任意实数m、n,定义一种运运算mn=mnmn+3,等式的右边是通常的加减和乘法运算,例如:35=3535+3=10请根据上述定义解决问题:若a2x7,且解集中有两个整数解,则a的取值范围是 【答案】
6、【解析】试题分析:根据题意得:2x=2x2x+3=x+1,ax+17,即a1x6解集中有两个整数解,a的范围为,故答案为:考点:1一元一次不等式组的整数解;2新定义;3含待定字母的不等式(组);4阅读型10(2015武汉)定义运算“*”,规定x*y=,其中a、b为常数,且1*2=5,2*1=6,则2*3= 【答案】10考点:1解二元一次方程组;2新定义;3阅读型11(2015临沂)定义:给定关于x的函数y,对于该函数图象上任意两点(,),(,),当时,都有,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有 (填上所有正确答案的序号);();【答案】【解析】试题分析:,20
7、,是增函数;,10,不是增函数;,当x0时,是增函数,是增函数;,在每个象限是增函数,因为缺少条件,不是增函数故答案为:考点:1二次函数的性质;2一次函数的性质;3正比例函数的性质;4反比例函数的性质;5新定义12(2015茂名)为了求1+3+32+33+3100的值,可令M=1+3+32+33+3100,则3M=3+32+33+34+3101,因此,3MM=31011,所以M=,即1+3+32+33+3100=,仿照以上推理计算:1+5+52+53+52015的值是 【答案】考点:1有理数的乘方;2阅读型;3综合题13(2015舟山)如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)
8、上,这样的多边形称为格点多边形,它的面积S可用公式(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40(1)这个格点多边形边界上的格点数b= (用含a的代数式表示)(2)设该格点多边形外的格点数为c,则ca= 【答案】(1)b=822a;(2)118【解析】试题分析:(1),且S=40,整理得:b=822a;(2)a是多边形内的格点数,b是多边形边界上的格点数,总格点数为200,边界上的格点数与多边形内的格点数的和为b+a=822a+a=82a,多边形外的格点数c=200(82a)=118+a,ca
9、=118+aa=118,故答案为:822a,118考点:1规律型:图形的变化类;2综合题;3阅读型14(2015淄博)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为 【答案】考点:1二次函数综合题;2新定义;3综合题15(2015湖州)如图,已知抛物线C1:和C2:都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM
10、恰好是矩形,你所写的一对抛物线解析式是 和 【答案】答案不唯一,如:,考点:1二次函数图象与几何变换;2新定义;3综合题;4压轴题16(2015营口)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径如图,ABC中,ABC=90,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD若DBC=60,ACB=15,BD=,则菱形ACEF的面积为 【答案】考点:1菱形的性质;2圆周角定理;3解直角三角形;4新定义;5综合题17(2015成都)如果关于x的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这
11、样的方程为“倍根方程”以下关于倍根方程的说法,正确的是_(写出所有正确说法的序号)方程是倍根方程;若是倍根方程,则;若点在反比例函数的图像上,则关于的方程是倍根方程;若方程是倍根方程,且相异两点,都在抛物线上,则方程的一个根为【答案】考点:1新定义;2根与系数的关系;3压轴题;4阅读型18(2015自贡)观察下表我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4xy,回答下列问题:(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n格的“特征多项式”为 ;(2)若第1格的“特征多项式”的值为10,第2格的“特征多项式”的值为16,求x,y的值【答案】(1
12、),;(2),考点:1规律型;2新定义;3阅读型19(2015南京)如图,ABCD,点E,F分别在AB,CD上,连接EF,AEF、CFE的平分线交于点G,BEF、DFE的平分线交于点H(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MNEF,分别交AB,CD于点M,N,过H作PQEF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路【答案】(1)证明见试题解析;(2)答案不唯一,例如:FG平分CFE;GE=FH;GME=FQH;GEF=EFH【解析】试题分析:(1)利用角平分线的定义结合平行线的
13、性质得出FEH+EFH=90,进而得出GEH=90,进而求出四边形EGFH是矩形;(2)利用菱形的判定方法首先得出要证MNQP是菱形,只要证MN=NQ,再证MGE=QFH得出即可试题解析:(1)EH平分BEF,FEH=BEF,FH平分DFE,EFH=DFE,ABCD,BEF+DFE=180,FEH+EFH=(BEF+DFE)=180=90,FEH+EFH+EHF=180,EHF=180(FEH+EFH)=18090=90,同理可得:EGF=90,EG平分AEF,EFG=AEF,EH平分BEF,FEH=BEF,点A、E、B在同一条直线上,AEB=180,即AEF+BEF=180,FEG+FEH=
14、(AEF+BEF)=180=90,即GEH=90,四边形EGFH是矩形;考点:1菱形的判定;2全等三角形的判定与性质;3矩形的判定;4阅读型;5开放型;6综合题20(2015达州)阅读与应用:阅读1:a、b为实数,且a0,b0,因为,所以从而(当a=b时取等号)阅读2:若函数;(m0,x0,m为常数),由阅读1结论可知:,所以当,即时,函数的最小值为阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(),求当x= 时,周长的最小值为 ;问题2:已知函数()与函数(),当x= 时,的最小值为 ;问题3:某民办学校每天的支出总费用包含以下三个部分
15、:一是教职工工资4900元;二是学生生活费成本每人10元;三是其他费用其中,其他费用与学生人数的平方成正比,比例系数为0.01当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用学生人数)【答案】(1)2,8;(2)2,6;(3)700,24试题解析:问题1:(),解得x=2,x=2时,有最小值为=4故当x=2时,周长的最小值为24=8;问题2:(),(),=,解得x=2,x=2时,有最小值为=6;问题3:设学校学生人数为x人,则生均投入=,(),解得x=700,x=700时,有最小值为=1400,故当x=700时,生均投入的最小值为10+0.011400=2
16、4元答:当学校学生人数为700时,该校每天生均投入最低,最低费用是24元考点:1二次函数的应用;2阅读型;3最值问题;4压轴题 21(2015凉山州)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线梯形的中位线具有以下性质:梯形的中位线平行于两底和,并且等于两底和的一半如图(1):在梯形ABCD中:ADBC,E、F是AB、CD的中点,EFADBC,EF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在ABC中:E是AB的中点,EF
17、BC,F是AC的中点请你运用所学知识,结合上述材料,解答下列问题如图(3)在梯形ABCD中,ADBC,ACBD于O,E、F分别为AB、CD的中点,DBC=30(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长【答案】(1)证明见试题解析;(2)2【解析】(2)ADBC,ADO=DBC=30,在RtAOD和RtBOC中,OA=AD,OC=BC,OD=,OC=5,OA=3,ADEF,ADO=OMN=30,ON=MN,AN=AC=(OA+OC)=4,ON=ANOA=43=1,MN=2ON=2考点:1四边形综合题;2阅读型;3综合题;4压轴题22(2015咸宁)定义:数学活动课上,乐老师给出
18、如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是O的直径,AC=BD求证:四边形ABCD是对等四边形;(3)如图3,在RtPBC中,PCB=90,BC=11,tanPBC=,点A在BP边上,且AB=13用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长【答案】(1)作图见试题解析;(2)证明见试题解析;(3)13、或【解析】试题分析:(1)由对等四边形的定义,画图即可;试题
19、解析:(1)如图1所示(画2个即可);(2)如图2,连接AC,BD,AB是O的直径,ADB=ACB=90,在RtADB和RtACB中,AB=BA,BD=AC,RtADBRtACB,AD=BC,又AB是O的直径,ABCD,四边形ABCD是对等四边形;(3)如图3,点D的位置如图所示,若CD=AB,此时点D在D1的位置,CD1=AB=13;若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AEBC,AFPC,垂足为E,F,设BE=x,tanPBC=,AE=,在RtABE中,即,解得:x=5或x=5(舍去),BE=5,AE=12,CE=BCBE=6,由四边形AE
20、CF为矩形,可得AF=CE=6,CF=AE=12,在RtAFD2中,FD2=,=,=,综上所述,CD的长度为13、或考点:1四边形综合题;2新定义;3分类讨论;4综合题;5压轴题23(2015常州)设是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与的面积相等(简称等积),那么这样的等积转化称为的“化方”(1)阅读填空如图,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积理由:连接AH,EHAE为直径,AHE=90,HAE+HEA=90DHAE,ADH=EDH=90
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2年中考1年模拟 【2年中考1年模拟】2016年中考数学 专题37 阅读理解问题试题含解析 年中 模拟 2016 数学 专题 37 阅读 理解 问题 试题 解析
限制150内