【备考2014】2013高考数学 (真题+模拟新题分类汇编) 解析几何 理.DOC
《【备考2014】2013高考数学 (真题+模拟新题分类汇编) 解析几何 理.DOC》由会员分享,可在线阅读,更多相关《【备考2014】2013高考数学 (真题+模拟新题分类汇编) 解析几何 理.DOC(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、解析几何 H1直线的倾斜角与斜率、直线的方程20H1,H5,H82013新课标全国卷 平面直角坐标系xOy中,过椭圆M:1(ab0)右焦点的直线xy0交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求M的方程;(2)C,D为M上两点,若四边形ACBD的对角线CDAB,求四边形ACBD面积的最大值20解:(1)设A(x1,y1),B(x2,y2),P(x0,y0),则1,1.1.由此可得1.因为x1x22x0,y1y22y0,所以a22b2.又由题意知,M的右焦点为(,0),故a2b23.因此a26,b23.所以M的方程为1.(2)由解得或因此|AB|.由题意可设直线CD的方程为yxnn
2、0,x,y满足约束条件若z2xy的最小值为1,则a()A. B. C1 D29B解析 直线ya(x3)过定点(3,0) .画出可行域如图,易得A(1,2a),B(3,0),C(1,2). 作出直线y2x,平移易知直线过A点时直线在y轴上的截距最小,即2(2a)1a .答案为B.H2两直线的位置关系与点到直线的距离8H22013湖南卷 在等腰直角三角形ABC中,ABAC4,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA反射后又回到点P(如图11所示),若光线QR经过ABC的重心,则AP等于()图11A2 B1C. D.8D解析 不妨设APm(0m4),建立坐标系,设AB为x轴,AC
3、为y轴,则A(0,0),B(4,0),C(0,4),Q(xQ,yQ),R(0,yR),P(m,0),可知ABC的重心为G,根据反射性质,可知P关于y轴的对称点P1(m,0)在直线QR上,P关于xy4的对称点P2(4,4m)在直线RQ上,则QR的方程为,将G代入可得3m24m0,即m或m0(舍),选D.12H2,E12013新课标全国卷 已知点A(1,0),B(1,0),C(0,1),直线yaxb(a0)将ABC分割为面积相等的两部分,则b的取值范围是()A(0,1) B.C. D.12B解析 方法一:易得ABC面积为1,利用极限位置和特值法当a0时,易得b1;当a时,易得b;当a1时,易得b1
4、.故选B.方法二:(直接法) y ,yaxb与x 轴交于,结合图形与a0 ,(ab)2a(a1)0a.a0,0b,当a0时,极限位置易得b1,故答案为B.7H2,H42013重庆卷 已知圆C1:(x2)2(y3)21,圆C2:(x3)2(y4)29,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|PN|的最小值为()A5 4 B. 1C62 D.7A解析 如图,作圆C1关于x轴的对称圆C1:(x2)2(y3)21,则|PM|PN|PN|PM|.由图可知当C2,N,P,M,C1在同一直线上时,|PM|PN|PN|PM|取得最小值,即为|C1C2|135 4,故选A.图13H3圆的方
5、程20H3,H10,H8,H52013新课标全国卷 已知圆M:(x1)2y21,圆N:(x1)2y29,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.20解:由已知得圆M的圆心为M(1,0),半径r11;圆N的圆心为N(1,0),半径r23.设圆P的圆心为P(x,y),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|PN|(Rr1)(r2R)r1r24.由椭圆的定义可知,曲线C是以M, N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为1
6、(x2)(2)对于曲线C上任意一点P(x,y),由于|PM|PN|2R22,所以R2,当且仅当圆P的圆心为(2,0)时,R2,所以当圆P的半径最长时,其方程为(x2)2y24.若l的倾斜角为90,则l与y轴重合,可得|AB|2 .若l的倾斜角不为90,由r1R知l不平行于x轴,设l与x轴的交点为Q,则,可求得Q(4,0),所以可设l:yk(x4)由l与圆M相切得1,解得k.当k时,将yx代入1,并整理得7x28x80.解得x1,2.所以|AB|x2x1|.当k时,由图形的对称性可知|AB|.综上,|AB|2 或|AB|.21F2、F3、H3、H5,H82013重庆卷 如图19所示,椭圆的中心为
7、原点O,长轴在x轴上,离心率e,过左焦点F1作x轴的垂线交椭圆于A,A两点,|AA|4.(1)求该椭圆的标准方程;(2)取垂直于x轴的直线与椭圆相交于不同的两点P,P,过P,P作圆心为Q的圆,使椭圆上的其余点均在圆Q外,若PQPQ,求圆Q的标准方程图1921解:(1)由题意知点A(c,2)在椭圆上,则1,从而e21.由e得b28,从而a216.故该椭圆的标准方程为1.(2)由椭圆的对称性,可设Q(x0,0)又设M(x,y)是椭圆上任意一点,则|QM|2(xx0)2y2x22x0xx8(x2x0)2x8(x4,4)设P(x1,y1),由题意,P是椭圆上到Q的距离最小的点,因此,上式当xx1时取得
8、最小值又因x1(4,4),所以上式当x2x0时取得最小值,从而x12x0,且|QP|28x.因为PQPQ,且P(x1,y1),所以(x1x0,y1)(x1x0,y1)0,即(x1x0)2y0.由椭圆方程及x12x0得x80,解得x1,x0,从而|QP|28x.故这样的圆有两个,其标准方程分别为y2,y2.H4直线与圆、圆与圆的位置关系9H42013江西卷 过点(,0)引直线l与曲线y相交于A,B两点,O为坐标原点,当AOB的面积取最大值时,直线l的斜率等于()A. BC D9B解析 AB:yk(x),k0,圆心到直线的距离d1,得1k0,|AB|22,SAOB|AB|d,1k0)的焦点为F,点
9、M在C上,|MF|5.若以MF为直径的圆过点(0,2),则C的方程为()Ay24x或y28xBy22x或y28xCy24x或y216xDy22x或y216x11C解析 抛物线焦点为F,0 ,由抛物线的定义,设M5,设N点坐标为(0,2)因为圆过点N(0,2),故NFNM1,设t,则式可化为t24 t80t2 p210p160p2或p8 .图1521H4,H52013浙江卷 如图15所示,点P(0,1)是椭圆C1:1(ab0)的一个顶点,C1的长轴是圆C2:x2y24的直径l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2
10、)求ABD面积取得最大值时直线l1的方程21解:(1)由题意得所以椭圆C的方程为y21.(2)设A(x1,y1),B(x2,y2),D(x0,y0)由题意知直线l1的斜率存在,不妨设其为k,则直线l1的方程为ykx1.又圆C2:x2y24,故点O到直线l1的距离d,所以|AB|2 2 .又l2l1,故直线l2的方程为xkyk0.由消去y,整理得(4k2)x28kx0.故x0,所以|PD|.设ABD的面积为S,则S|AB|PD|,所以S,当且仅当k时取等号所以所求直线l1的方程为yx1.7H2,H42013重庆卷 已知圆C1:(x2)2(y3)21,圆C2:(x3)2(y4)29,M,N分别是圆
11、C1,C2上的动点,P为x轴上的动点,则|PM|PN|的最小值为()A5 4 B. 1C62 D.7A解析 如图,作圆C1关于x轴的对称圆C1:(x2)2(y3)21,则|PM|PN|PN|PM|.由图可知当C2,N,P,M,C1在同一直线上时,|PM|PN|PN|PM|取得最小值,即为|C1C2|135 4,故选A.图13H5椭圆及其几何性质20H3,H10,H8,H52013新课标全国卷 已知圆M:(x1)2y21,圆N:(x1)2y29,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最
12、长时,求|AB|.20解:由已知得圆M的圆心为M(1,0),半径r11;圆N的圆心为N(1,0),半径r23.设圆P的圆心为P(x,y),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|PN|(Rr1)(r2R)r1r24.由椭圆的定义可知,曲线C是以M, N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为1(x2)(2)对于曲线C上任意一点P(x,y),由于|PM|PN|2R22,所以R2,当且仅当圆P的圆心为(2,0)时,R2,所以当圆P的半径最长时,其方程为(x2)2y24.若l的倾斜角为90,则l与y轴重合,可得|AB|2 .若l的倾斜角不为90,由r
13、1R知l不平行于x轴,设l与x轴的交点为Q,则,可求得Q(4,0),所以可设l:yk(x4)由l与圆M相切得1,解得k.当k时,将yx代入1,并整理得7x28x80.解得x1,2.所以|AB|x2x1|.当k时,由图形的对称性可知|AB|.综上,|AB|2 或|AB|.10H52013新课标全国卷 已知椭圆E:1(ab0)的右焦点为F(3,0),过点F的直线交E于A,B两点,若AB的中点坐标为(1,1),则E的方程为()A.1 B.1C.1 D.110D解析 由题意知kAB,设A(x1,y1),B(x2,y2),则0.由AB的中点是(1,1)知,联立a2b29,解得a218,b29,故椭圆E的
14、方程为1.18H5、H8、H92013安徽卷 设椭圆E:1的焦点在x轴上(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1PF1Q.证明:当a变化时,点P在某定直线上18解:(1)因为焦距为1,所以2a21,解得a2.故椭圆E的方程为1.(2)设P(x0,y0),F1(c,0),F2(c,0),其中c.由题设知x0c,则直线F1P的斜率kF1P,直线F2P的斜率kF2P,故直线F2P的方程为y(xc)x0时,y,即点Q的坐标为0,.因此,直线F1Q的斜率为kF1Q.由于F1PF1Q,所以kF1PkF
15、1Q1.化简得yx(2a21)将代入椭圆E的方程,由于点P(x0,y0)在第一象限,解得x0a2,y01a2,即点P在定直线xy1上14H5,H82013福建卷 椭圆:1(ab0)的左、右焦点分别为F1,F2,焦距为2c.若直线y(xc)与椭圆的一个交点M满足MF1F22MF2F1,则该椭圆的离心率等于_14.1解析 如图,MF1F2中,MF1F260,MF2F130,F1MF290,又|F1F2|2c,|MF1|c,|MF2|c,2a|MF1|MF2|cc,得e1.12H52013江苏卷 在平面直角坐标系xOy中,椭圆C的标准方程为1(a0,b0),右焦点为F,右准线为l,短轴的一个端点为B
16、.设原点到直线BF的距离为d1,F到l的距离为d2.若d2d1,则椭圆C的离心率为_12.解析 由题意知F(c,0),l:x,不妨设B(0,b),则直线BF:1,即bxcybc0.于是d1,d2c.由d2d1,得6,化简得6c4a2c2a40,即6e4e210,解得e2或e2(舍去),故e,故椭圆C的离心率为.20.图17H5,H82013江西卷 如图17所示,椭圆C:1(ab0)经过点P,离心率e,直线l的方程为x4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数,使得k1k
17、2k3?若存在,求的值;若不存在,说明理由解:(1)由P在椭圆上得1,依题设知a2c,则b23c2,代入解得c21,a24,b23.故椭圆C的方程为1.(2)方法一:由题意可设AB的斜率为k,则直线AB的方程为yk(x1),代入椭圆方程3x24y212并整理,得(4k23)x28k2x4(k23)0.设A(x1,y1),B(x2,y2),则有x1x2,x1x2,在方程中令x4得,M的坐标为(4,3k)从而k1,k2,k3k,注意到A,F,B共线,则有kkAFkBF,即有k,所以k1k22k,代入得k1k22k2k1.又k3k,所以k1k22k3,故存在常数2符合题意方法二:设B(x0,y0)(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备考2014 【备考2014】2013高考数学 真题+模拟新题分类汇编 解析几何 备考 2014 2013 高考 数学 模拟 分类 汇编
限制150内