2021版高考数学一轮复习第3章导数及其应用第2节导数的应用第3课时利用导数证明不等式课时跟踪检测理新人教A版202005110229.doc
《2021版高考数学一轮复习第3章导数及其应用第2节导数的应用第3课时利用导数证明不等式课时跟踪检测理新人教A版202005110229.doc》由会员分享,可在线阅读,更多相关《2021版高考数学一轮复习第3章导数及其应用第2节导数的应用第3课时利用导数证明不等式课时跟踪检测理新人教A版202005110229.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第三课时利用导数证明不等式A级基础过关|固根基|1.已知函数f(x)1,g(x)xln x证明:(1)g(x)1;(2)(xln x)f(x)1.证明:(1)由题意,得g(x)(x0),当0x1时,g(x)1时,g(x)0,即g(x)在(0,1)上是减函数,在(1,)上是增函数所以g(x)g(1)1,得证(2)由f(x)1,得f(x),所以当0x2时,f(x)2时,f(x)0,即f(x)在(0,2)上是减函数,在(2,)上是增函数,所以f(x)f(2)1(当且仅当x2时取等号)又由(1)知,xln x1(当且仅当x1时取等号),且等号不同时取得,所以(xln x)f(x)1.2(2020届石家
2、庄摸底)已知函数f(x)(2x)ek(x1)x(kR,e为自然对数的底数)(1)若f(x)在R上单调递减,求k的最大值;(2)当x(1,2)时,证明:ln2.解:(1)f(x)在R上单调递减,f(x)ek(x1)k(2x)110恒成立,即kx2k1对任意xR恒成立设g(x)kx2k1,则g(x)0对任意xR恒成立,显然应满足g(1)2k0,k2.当k2时,g(x)2,且g(1)0,当x(1,)时,g(x)0,g(x)单调递增,当x(,1)时,g(x)0,g(x)单调递减,g(x)ming(1)0,即g(x)0恒成立,故k的最大值为2.(2)证明:由(1)知,当k2时,f(x)(2x)e2(x1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 复习 导数 及其 应用 课时 利用 证明 不等式 跟踪 检测 新人 202005110229
链接地址:https://www.taowenge.com/p-44941829.html
限制150内