2019_2020学年高中数学第1章导数及其应用章末综合检测一新人教B版选修2_2.doc
《2019_2020学年高中数学第1章导数及其应用章末综合检测一新人教B版选修2_2.doc》由会员分享,可在线阅读,更多相关《2019_2020学年高中数学第1章导数及其应用章末综合检测一新人教B版选修2_2.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、章末综合检测(一) (时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1下列各式正确的是()A(sin a)cos a(a为常数)B(cos x)sin xC(sin x)cos xD(x5)x6解析:选C.由导数公式知选项A中(sin a)0;选项B中(cos x)sin x;选项D中(x5)5x6.2若曲线yx2axb在点(0,b)处的切线方程是xy10,则()Aa1,b1Ba1,b1Ca1,b1 Da1,b1解析:选A.y2xa,所以y|x0a1.将点(0,b)代入切线方程,得b1.3已知某物体运动的路程与时间的
2、关系为st3ln t,则该物体在t4时的速度为()A. B.C. D.解析:选C.由st3ln t,得st2,所以s|t442.4设x2与x4是函数f(x)x3ax2bx的两个极值点,则常数ab的值为()A21 B21C27 D27解析:选A.因为f(x)3x22axb,所以所以ab32421.故选A.5函数f(x)x2ln 2x的单调递减区间是()A. B.C., D.,解析:选A.因为f(x)2x,所以f(x)0解得0x.6f(x)是一次函数,过点(2,3),且f(x)dx0,则函数f(x)的图象与坐标轴围成的三角形的面积为()A1 BC D解析:选C.设f(x)kxb(k0)由题意得2k
3、b3,(kxb)dx0,0,即kb0.联立得,k2,b1.所以f(x)2x1.直线yf(x)与坐标轴的交点分别为与(0,1),所以所求的面积为1.7设曲线yaxln(x1)在点(0,0)处的切线方程为y2x,则a()A0 B1C2 D3解析:选D.令f(x)axln(x1),则f(x)a .由导数的几何意义可得在点(0,0)处的切线的斜率为f(0)a1.又切线方程为y2x,则有a12,所以a3.8设函数f(x)ln x,则()Ax为f(x)的极大值点Bx为f(x)的极小值点Cx2为f(x)的极大值点Dx2为f(x)的极小值点解析:选D.因为f(x)ln x,所以f(x),令f(x)0,即0,解
4、得x2.当x2时,f(x)0;当x2时,f(x)0,所以x2为f(x)的极小值点9曲线ysin x,ycos x与直线x0,x所围成的平面区域的面积为()A(sin xcos x)dx B2(sin xcos x)dxC(cos xsin x)dx D2(cos xsin x)dx解析:选D.如图所示,两阴影部分面积相等,所以两阴影面积之和等于0x阴影部分面积的2倍故选D.10内接于半径为R的球且体积最大的圆锥的高为()AR B2RCR DR解析:选C.设圆锥高为h,底面半径为r,则R2(hR)2r2,所以r22Rhh2.所以Vr2hh(2Rhh2)Rh2h3,VRhh2.令V0得hR.当0h
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 _2020 学年 高中数学 导数 及其 应用 综合 检测 新人 选修 _2
限制150内