2018_2019版高中数学第三章不等式3.4.2基本不等式的应用练习新人教A版必修5.doc
《2018_2019版高中数学第三章不等式3.4.2基本不等式的应用练习新人教A版必修5.doc》由会员分享,可在线阅读,更多相关《2018_2019版高中数学第三章不等式3.4.2基本不等式的应用练习新人教A版必修5.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第2课时基本不等式的应用课后篇巩固探究A组1.函数f(x)=x+-1的值域是()A.(-,-35,+)B.3,+)C.(-,-53,+)D.(-,-44,+)解析当x0时,x+-12-1=3,当且仅当x=2时,取等号;当x2)在x=a处取最小值,则a=()A.1+B.1+C.3D.4解析f(x)=x+=x-2+2.x2,x-20.f(x)=x-2+22+2=4,当且仅当x-2=,即x=3时,等号成立.又f(x)在x=a处取最小值,a=3.答案C3.周长为4+2的直角三角形的面积的最大值是()A.2B.1C.4D.解析设两条直角边长分别为a,b,则斜边长为,于是依题意有a+b+=4+2.由基本不
2、等式知a+b+=4+22,即2,所以ab4,当且仅当a=b=2时,取等号.故三角形的面积S=ab2.答案A4.若x,y0,且xy-(x+y)=1,则有()A.x+y2(+1)B.xy+1C.x+y(+1)2D.xy2(+1)解析由xy-(x+y)=1,得xy=1+(x+y),即(x+y)2-4(x+y)-40.因为x0,y0,所以解得x+y2+2=2(+1),当且仅当x=y时,取等号.答案A5.将一根铁丝切割成三段做一个面积为2 m2、形状为直角三角形的框架,在下面四种长度的铁丝中,选用最合理(够用且浪费最少)的是()A.6.5 mB.6.8 mC.7 mD.7.2 m解析设两条直角边长分别为
3、a m,b m,直角三角形框架的周长为l m,则斜边长为 m, ab=2,即ab=4.所以l=a+b+2=4+26.828,当且仅当a=b=2时,取等号.由于要求够用且浪费最少,故选C.答案C6.若正数x,y满足x+4y=4,则xy的最大值为.解析由基本不等式可得x+4y2=4,于是44,xy1,当且仅当x=4y时,取等号.故xy的最大值为1.答案17.要建造一个容积为18 m3,深为2 m的长方形无盖水池,如果池底和池壁每平方米的造价分别为200元和150元,那么水池的最低造价为元.解析设水池底的长为x m,宽为y m,则有2xy=18,即xy=9.这时水池的造价p=200xy+1502(2
4、x+2y),即p=1 800+600(x+y),于是p1 800+6002=1 800+6002=5 400,当且仅当x=y=3时,等号成立.故水池的最低造价为5 400元.答案5 4008.已知不等式k对所有正数x,y都成立,则k的最小值是.解析因为x0,y0,所以x+y22(x+y)()2,即,要使k对所有正数x,y都成立,即k,故k,即k的最小值为.答案9.求函数y=(x1)的最大值.解函数y=2+.令x-1=t(t0),则x=1+t.所以y=2+=2+2+=2+,当且仅当t=2,即x=3时,函数取得最大值.10.导学号04994089为了夏季降温和减少能源消耗,某体育馆外墙需要建造可使
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 _2019 高中数学 第三 不等式 3.4 基本 应用 练习 新人 必修
限制150内