2018_2019版高中数学第三章不等式3.3.2简单的线性规划问题练习新人教A版必修5.doc
《2018_2019版高中数学第三章不等式3.3.2简单的线性规划问题练习新人教A版必修5.doc》由会员分享,可在线阅读,更多相关《2018_2019版高中数学第三章不等式3.3.2简单的线性规划问题练习新人教A版必修5.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.3.2简单的线性规划问题课后篇巩固探究A组1.已知某线性规划问题中的目标函数为z=3x-y,若将其看成直线方程,则z的几何意义是()A.该直线的截距B.该直线的纵截距C.该直线的纵截距的相反数D.该直线的横截距解析由z=3x-y,得y=3x-z,在该方程中-z表示直线的纵截距,因此z表示该直线的纵截距的相反数.答案C2. 目标函数z=x-y在的线性约束条件下,取得最大值的可行解为()A.(0,1)B.(-1,-1) C.(1,0)D.解析可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=,y=时,z=0.排除选项A,
2、B,D,故选C.答案C3.若变量x,y满足约束条件目标函数为z=4x+2y,则有()A.z有最大值无最小值B.z有最小值无最大值C.z的最小值是8D.z的最大值是10解析由z=4x+2y,得y=-2x+.作出不等式组对应的平面区域,如图阴影部分所示.平移直线y=-2x,当直线y=-2x+经过点B(0,1)时,直线y=-2x+在y轴上的截距最小,此时z最小,且zmin=2.当直线y=-2x+经过点C(2,1)时,直线y=-2x+在y轴上的截距最大,此时z最大,且zmax=42+21=10.故选D.答案D4.若直线y=2x上存在点(x,y)满足约束条件则实数m的最大值为()A.-1B.1C.D.2
3、解析满足约束条件的平面区域如图中的阴影部分所示,由得交点P(1,2).当直线x=m经过点P时,m取到最大值1.答案B5.已知实数x,y满足约束条件则z=2x+y的最小值为.解析因为z=2x+y,所以y=-2x+z.不等式组满足的平面区域如图阴影部分所示.平移直线2x+y=0,由图形可求得z=2x+y的最小值是-2.答案-26.已知变量x,y满足则z=x+y-2的最大值为.解析作出可行域,如图阴影部分所示.由图知,目标函数z=x+y-2在点A处取得最大值.易知A(1,2),故zmax=1+2-2=1.答案17.铁矿石A和B的含铁率a、冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表
4、:ab/万吨c/百万元A50%13B70%0.56某冶炼厂至少要生产1.9万吨的铁,若要求CO2的排放量不超过2万吨,则购买铁矿石的最少费用为百万元.解析设需购买铁矿石A x万吨,铁矿石B y万吨,购买费用为z,则根据题意得到的约束条件为目标函数为z=3x+6y.画出约束条件表示的可行域,如图阴影部分所示.当直线3x+6y=z经过点(1,2)时,z取最小值,且z最小值=31+62=15.答案158. 导学号04994076已知S为平面上以A(3,-1),B(-1,1),C(1,3)为顶点的三角形区域(含三角形内部及边界).若点(x,y)在区域S上移动.(1)求z=3x-2y的最值;(2)求z=
5、y-x的最大值,并指出其最优解.解(1)z=3x-2y可化为y=x-x+b,故求z的最大值、最小值,相当于求直线y=x+b在y轴上的截距b的最小值、最大值,即b取最大值,z取最小值;反之亦然.如图,平移直线y=x,当y=x+b经过点B时,bmax=,此时zmin=-2b=-5;当y=x+b经过点A时,bmin=-,此时zmax=-2b=11.故z=3x-2y的最大值为11,最小值为-5.(2)z=y-x可化为y=x+z,故求z的最大值,相当于求直线y=x+z在y轴上的截距z的最大值.如图,平行移动直线y=x,当直线y=x+z与直线BC重合时,zmax=2,此时线段BC上任一点的坐标都是最优解.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 _2019 高中数学 第三 不等式 3.3 简单 线性规划 问题 练习 新人 必修
限制150内