2022届高考数学一轮复习核心素养测评第9章9.5椭圆含解析新人教B版.doc
《2022届高考数学一轮复习核心素养测评第9章9.5椭圆含解析新人教B版.doc》由会员分享,可在线阅读,更多相关《2022届高考数学一轮复习核心素养测评第9章9.5椭圆含解析新人教B版.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、核心素养测评 五十椭圆(30分钟60分)一、选择题(每小题5分,共25分)1.(2019北京高考)已知椭圆+=1(ab0)的离心率为,则()A.a2=2b2B.3a2=4b2C.a=2bD.3a=4b【解析】选B.离心率平方e2=,即4(a2-b2)=a2,即3a2=4b2.2.已知椭圆+=1(ab0)的一个焦点是x2+y2-6x+8=0的圆心,且短轴长为8,则椭圆的左顶点为()A.(-3,0)B.(-4,0)C.(-10,0)D.(-5,0)【解析】选D.因为圆的标准方程为(x-3)2+y2=1,所以圆心坐标为(3,0),所以c=3,又b=4,所以a=5,因为椭圆的焦点在x轴上,所以椭圆的左
2、顶点为(-5,0).3.已知椭圆+=1(ab0)的离心率为,椭圆上一点P到两焦点距离之和为12,则椭圆短轴长为()A.8B.6C.5D.4【解析】选A.椭圆+=1(ab0)的离心率e=,椭圆上一点P到两焦点距离之和为12,即2a=12,可得a=6,c=2,所以b=4,则椭圆短轴长为2b=8.4.(多选)(2020青岛模拟)已知椭圆C的中心为坐标原点,焦点F1,F2在y轴上,短轴长等于2,离心率为,过焦点F1作y轴的垂线交椭圆C于P、Q两点,则下列说法正确的是()A.椭圆C的方程为+x2=1B.椭圆C的方程为+y2=1C.|PQ|=D.PF2Q的周长为4【解析】选ACD.由已知得,2b=2,b=
3、1,=,又a2=b2+c2,解得a2=3.所以椭圆方程为x2+=1.如图:所以|PQ|=,PF2Q的周长为4a=4.5.已知点P(x1,y1)是椭圆+=1上一点,F1,F2是左、右焦点,若F1PF2取最大值时,则PF1F2的面积是()A.B.12C.16(2+)D.16(2-)【解析】选B.因为椭圆方程+=1,所以a=5,b=4,c=3,因此,椭圆的焦点坐标为F1(-3,0),F2(3,0),根据椭圆的性质可知,当点P与短轴端点重合时,F1PF2取最大值,则此时PF1F2的面积S=234=12.二、填空题(每小题5分,共15分)6.(2020南阳模拟)已知O为坐标原点,F为椭圆C:+=1(ab
4、0)的右焦点,过点F且倾斜角为120的直线与椭圆C交于第一象限一点P,若POF为正三角形,则椭圆C的离心率为_.【解析】因为|OF|=c,POF为正三角形,所以|PO|=c,则点P的坐标为,故有整理得e4-8e2+4=0,解得e2=4-2,所以e=-1.答案:-17.以椭圆C:+=1在x轴上的顶点和焦点分别为焦点和顶点的双曲线方程为_;该双曲线的渐近线方程为_.【解析】椭圆C:+=1在x轴上的顶点为(,0),焦点为(1,0),设双曲线的方程为-=1(a0,b0),可得a=1,c=,b=2,可得x2-=1.双曲线的渐近线方程为:y=2x.答案:x2-=1y=2x8.点M是椭圆+=1(ab0)上的
5、点,以M为圆心的圆与x轴相切于椭圆的焦点F,圆M与y轴相交于P,Q,若PQM是钝角三角形,则椭圆离心率的取值范围是_.世纪金榜导学号【解析】不妨设圆M与椭圆相切于左焦点F,设M(-c,yM),由圆的性质可知:|MF|=|MQ|=|MP|=|yM|,则=-c2,即|PQ|2=4-4c2,由MPQ为钝角三角形,即PMQ为钝角,则cosPMQ=0,所以2c2-0.又因为M(-c,yM)在椭圆上,代入化简得=,故2c2-0,即e4-4e2+10,解得e22+,又e(0,1),所以e22-,故0eb0)的离心率e=,且椭圆C经过点(2,).世纪金榜导学号(1)求椭圆C的标准方程.(2)过点P(2,1)作
6、直线l与该椭圆相交于A,B两点,若线段AB恰被点P所平分,求直线l的方程.【解析】(1)由题意得解得a2=8,b2=6,所以椭圆C的方程为+=1.(2)由题意点P在椭圆内部,设A(x1,y1),B(x2,y2),则两式相减,得+=0,AB的中点为P(2,1),所以x1+x2=4,y1+y2=2,代入上式得+=0,得kAB=-.所以直线l的方程为y-1=-(x-2),即3x+2y-8=0.10.若A(x1,y1),B(x2,y2)是椭圆E:+y2=1上位于x轴上方两点,且x1+x2=2.世纪金榜导学号(1)若y1+y2=1,求线段AB的垂直平分线的方程.(2)求直线AB在y轴上截距的最小值.【解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 核心 素养 测评 9.5 椭圆 解析 新人
限制150内