植物基因工程.docx
《植物基因工程.docx》由会员分享,可在线阅读,更多相关《植物基因工程.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第15页 共15页第六章 植物基因工程课程基因工程原理与技术班级生物科学05生物技术05教师詹亚光范桂枝学期第二学期课时6学时上课日期课的类型理论授课章节第六章 植物基因工程(1)植物基因转化受体系统的条件(2)植物基因转化受体系统的类型和特性。(3)植物基因工程载体的种类和特性(4)根癌农杆菌Ti质粒的结构与功能:T-DNA、Vir区操纵子的基因结构与功能。(5)农杆菌Ti质粒基因转化机理(6)农杆菌Ti质粒的改造及载体构建(7)载体构建中常用的选择标记及报告基因(8)根癌农杆菌的转化程序及操作原理(9)外源基因在植物中的表达
2、教学目的和要求了解植物基因转化受体系统的类型、特性掌握Ti质粒的结构与功能,植物载体构建原理,植物基因工程常用的载体类型。教材分析重点根癌农杆菌Ti质粒介导的基因转化的原理和方法难点植物载体构建原理关键点转基因植物的获取和检测主要教具和设备材料投影仪、电脑、常规教学设备 教法板书与多媒体授课相结合思考题1. 植物基因工程载体种类?2. 根癌农杆菌转化程序?心得 在自然界的许多双子叶植物中,常常发生一种严重危害植物生长的病害冠瘿。已知90多科,600多种双子叶植物都能感染这种病。一般认为单子叶植物和裸子植物对此病不敏感。70年代中期,世界上几个实验室发现诱发肿瘤的根癌农杆菌中含有大量的诱瘤质粒T
3、i(tumor-inducing plasmid),且证实了肿瘤的形成正是由于pTi中的特定片段T-DNA转移并稳定地整合进植物细胞核基因组中的结果;由于其上载着的冠瘿碱合成基因和激素合成基因表达,因此分泌冠瘿碱并形成肿瘤。人们就把这种冠瘿的形成过程称作天然的植物细胞转化系统。农杆菌将自身的DNA插入植物细胞诱发肿瘤只对其本身是有益的,重要原因之一是因为农杆菌诱发植物细胞合成冠瘿碱为自己提供食物。植物自身不能利用这种物质,只能为它的合成付出代价,别的细菌也不能利用它,在自然条件下,只有农杆菌能分泌分解冠瘿碱的酶,将这些特异产物作为唯一的碳源和氮源来利用。肿瘤的产生是由于T-DNA上的激素合成基
4、因所致,刺激细胞生长而产生肿瘤,这是T-DNA转入的一个副产品。Ti质粒给自己设计出一套为其自身存活的非常优秀的进化格局:它感染植物细胞,使之出现愈伤组织增生,后者便产生出供带有Ti质粒的细菌用作能源、碳源和氮源的冠瘿碱;而冠瘿碱的产生又可激发Ti质粒转移到原先没有存在这种质粒的土壤农杆菌中去,如此周而复始得到不断发展。Ti质粒是一类理想的植物基因工程载体,通过它们可以将外源DNA转移到植物细胞,并再生出能够表达外源基因的转基因植物。Ti质粒还具有若干其他载体所不具备的优点:(1)T-DNA能够进行高频的转移,而且这种转移的DNA通常是以未发生变化的完整形式整合到植物的核基因组上。(2)Ti质
5、粒不存在包装限制问题,大到50kb的外源DNA也能顺利地包装与转移。一、植物基因工程载体种类据载体的功能和构建过程,可把有关载体分为四大类型(九种载体)。克隆载体、中间载体、卸甲载体、转化载体据载体的功能和构建过程,可把有关载体分为四大类型,九种载体。1、克隆载体(目的基因的克隆载体)通常由多拷贝的E.coli小质粒为载体功能:保存和克隆目的基因。2、中间载体又分为中间克隆载体和中间表达载体。 中间克隆载体:由大肠杆菌质粒插入T-DNA片段及目的基因、标记基因等构建而成。功能:构建中间表达载体的基础。分为:中间粘粒载体、质粒粘粒愈合载体、基因标记载体。 中间表达载体:含有植物特异启动子的中间载
6、体功能:作为构建转化载体的质粒。3、卸甲载体解除武装的Ti质粒或Ri质粒。(onc+ - onc-)功能:作为转化载体的受体质粒4、转化载体最后用于目的基因导入植物细胞的载体,亦称工程载体。它是由中间表达载体和卸甲载体构建而成。分为一元载体系统(顺式载体)和双元转化载体系统(反式载体)。一元载体系统包括共整合载体和拼接末端载体(SEV)。二、根癌农杆菌Ti质粒1、Ti质粒的类型、结构与功能(1)类型Ti质粒是根癌农杆菌染色体以外的遗传物质,为双股共价闭合的环状DNA分子,分子量为95156 x 106D,约150 200 Kb长。根据其诱导的冠瘿碱种类不同,Ti质粒可分为三类:章鱼碱型(oct
7、opine):pTiAch5, pTiA6NC, pTiB653, pTiAg162胭脂碱型(nopaline):pTiT37, pTiT38, pTiC58农杆碱型(agropine)和农杆碱素型(agrocinopine)或琥珀碱型(succinamopine)(2)结构和功能各种Ti质粒都可分为四个区:T-DNA区(transferred-DNA regions):是农杆菌侵染植物细胞时,从Ti质粒上切割下来转移到植物细胞的一段DNA。该DNA片段上的基因与肿瘤的形成有关。Vir区(Virulence region):该区段上的基因能激活T-DNA转移,使农杆菌表现出毒性,故称之为毒性区
8、。T-DNA区与vir区在质粒上彼此相邻,合起来约占Ti质粒DNA的1/3。Con区(region of replication):质粒结合转移位点编码区,该区段上存在着与细菌间接合转移的有关基因(tra),调控Ti质粒在农杆菌之间的转移。冠瘿碱能激活tra基因,诱导Ti质粒转移,因此,称之为接合转移编码区。Ori区(origin of replication):该区段基因调控Ti质粒的自我复制,称之为复制起始区。3种成分与Ti质粒肿瘤诱导有关:T-DNA:它可转移至宿主细胞,是一种可移动因子。毒性区:vir基因可产生转移活动蛋白,对增强植物细胞的转化是必须的。土壤农癌杆菌染色体基因:间接参与
9、转化,负责将细菌细胞接合于植物上。2、T-DNA的基因结构和功能(1)T-DNA的结构特点长约23Kb在T-DNA的5和3端都有真核表达信号,如TATAbox,AATAAbox及polyA等。 T-DNA的两端左右边界各为25bp的重复序列,即边界序列,分别称之为左边界(BL或TL)和右边界(BR或TR)。该25bp边界序列属保守序列(TGACACGATATAT TGGCGGGTAAAC)。通常右边界序列更为保守,左边界在某些情况下有所变化。左边界的缺失突变仍能致瘤,但右边界缺失则不致瘤,这时几乎完全没有T-DNA的转移,这说明右边界在T-DNA的转移中的重要性。胭脂碱型肿瘤,为一连续的一段序
10、列,长约23.4Kb,有肿瘤系,仅一个拷贝,有的T-DNA是多拷贝的。章鱼碱型肿瘤:T-DNA分左右两部分(TL-DNA和TR-DNA),各自带有左右边界序列。左区的顺序变化不大,长度约13Kb,通常一个拷贝,但也有几个拷贝首尾相连排列。含章鱼碱合成酶基因和致瘤基因。TR-DNA较短,长约6-7Kb,拷贝数达数个 或数十个,有的肿瘤系中没有TR-DNA。TR-DNA编码5个基因,如甘露碱和冠瘿碱合成酶基因。(2)T-DNA上的编码基因及功能 章鱼碱型和胭脂碱型T-DNA的转录有下述共同特点:T-DNA的两条链都是有意义链;T-DNA上每个基因都有各自的启动子;基因的转录由植物细胞RNA聚合酶I
11、I完成;T-DNA具典型的真核生物RNA合成起始和终止的调节信号,在其5端转录起始处有TATA和CAAT盒。另外,至少在5个T-DNA基因中发现有一个8bp的相同顺序(TTTCAA GA),同时AATAAA加尾信号也在同一条链上发现。植物或农杆菌中可能有甲基化或去甲基化的调节基因活性。3、Vir区操纵子的基因结构与功能毒性区的大多数基因产物都控制T-DNA的转移,这个区域的突变往往导致农杆菌感染植物能力的下降。(1)Vir区操纵子的基因结构章鱼碱型Ti质粒:Vir区大小为40kb,含有VirA、B、C、D、E、F、G、H(PinF)等8个操纵子,共24个基因。大多数操纵子含有多个基因VirA(
12、1)、VirB(11)、VirC(2)、VirD(4)VirE(2)、VirF(1)、VirH(2)。胭脂碱型Ti:有7个操纵子,少一个VirF,它们的第一个操纵子也不同,章鱼碱型Ti是VirH,而胭脂碱型Ti是Tzs,其功能也不同。Vir区基因的表达有两种方式:组成型表达;在无植物诱导分子存在下依然保持一定的表达水平,virA,virG、virH诱导型表达:这些基因的表达必须在土壤农杆菌感染植物时,在植物受伤组织分泌的信号分子作用下才能启动表达,如virB、C、D、EvirG虽属于组成型表达,但有植物信号分子存在下表达量提高10倍,也具诱导表达特性。(2)Vir区操纵子的基因的功能Vir A
13、 单个基因,2.4kb,仅编码一条多肽。Vir A编码一种结合在膜上的化学受体蛋白(92KD),可直接对植物产生的酚类化合物感应,是一种感应蛋白。Vir A的活化:当AS与Vir A的受体部分结合后,会使整个Vir A蛋白构象发生变化,其C端活化。Vir A蛋白的胞质区有自激酶的功能,可在保守的组氨酸残基上磷酸化,从而Vir A蛋白被激活。激活后的Vir A具有转移其磷酸基至Vir G蛋白的一个宿存的天冬氨酸残基的能力,使Vir G蛋白激活。Vir G Vir G ,只有1Kb,单基因,编码DNA结合蛋白,其C端有DNA结合活性,N端具有磷酸化的酸性结构。从总体效应讲,Vir G基因是属于组成
14、型表达的,这对于细菌迅速地将外部环境信号传递到细胞内十分有利。当磷酸化的A蛋白将其磷酸基转到Vir G保守的天冬氨酸残基上时,使Vir G蛋白活化,活化Vir G蛋白可以二体或多体形式结合到Vir启动子的特定区,从而成为其它Vir 基因转录的激活因 子,打开Vir B、C、D、E、H等几个基因。Vir A或G突变后会减弱或完全失去对其他Vir 位点活化的诱导,VirA及 Vir G 的这种调控作用被称为双因子调控体系。Vir H、Vir F及Tzs这些基因对质粒是特异的,在章鱼碱型中有Vir F、Vir H,在胭脂碱型中有Tzs。 Vir H:对植物产生的某些杀菌或抑菌化合物起解毒作用,从而使
15、自身生不受抑制,可增强致瘤能力。Vir F:编码一个23KD蛋白,通过Vir 系统传递到植物细胞中,对T-DNA起运输作用。Tzs:大部分胭脂碱型菌株的Ti质粒上均有Tzs基因,转运玉米素合成酶基因,在细菌中表达后将玉米素分泌到细胞外。该细胞分裂素被植物吸收后,能促进农杆菌感染部位的植物组织脱分化和细胞分裂,提高植物对农杆菌转化的感受性。三、农杆菌Ti质粒基因转化机理1. T-DNA的加工及转移首先在下链25bp重复序列的右边界左起第3和第4碱基间剪切,从缺口的3端开始合成新的DNA链,并一直延伸到左边界第22bp处。置换出原来的下链,形成ssDNA,即T链。VirD蛋白的功能:VirD1及
16、VirD2分别编码16KD和47KD蛋白,与T-DNA的加工有关,决定在边界重复序列的特定位点上形成切口,产生T链断裂。 VirD2蛋白的功能:特异剪切,并与T链的5端共价结合。导向功能;2.T链蛋白复合体的形成及VirE的功能T链必须横向跨越细菌细胞膜、细菌细胞壁、植物细胞壁、植物细胞膜及核膜才能整合进植物基因组。T链以一种DNA-蛋白复合体(T复合体)的形式存在。目前已知至少两种Vir特异蛋白即VirE2和VirD2与T链蛋白复合体的形成有关。VirE2的功能:编码ssDNA结合蛋白,该蛋白可非特异地一与任何ssDNA结合,通过与T链非共价结合,VirE2可包被T链形成细长的核-蛋白丝,使
17、ssDNA抗3和5外切核酸酶和内切核酸酶。3、T链复合体通过细菌细胞膜的转运及VirB的功能(1)VirB的功能VirB启动子有11个基因,大多数编码跨膜蛋白或膜结合蛋白,能在膜上形成一种类似细菌接合转移时从供体菌转至受体菌所必须的结构接合孔或性毛。T-DNA通过这种孔由细菌进入植物细胞。同时,VirB也可能起运输和提供能量的作用。按功能,可将VirB蛋白分成五类:R:在内膜上或内膜内的某些蛋白,可能作为T复合体的受体;A:此类蛋白可能作为能源,作为一种ATP酶促进T复合体被泵出细菌细胞,VirB11可能是这种A类蛋白。C:形成通道的作用,如:VirB4是一种富集蛋白,无疏水区,无信号肽,可能
18、在T链转运中起一种结构作用,形成至少一部分特殊的通道结构。S:载体蛋白,起运载T 复合体穿过通道的作用,这类蛋白可能与所有膜成分(内膜、外膜及周膜)有关。P:位于外膜上,可能作为结合植物细胞膜的一种受体。(2)T复合体向植物细胞核的转运VirD2可能以一种极性方向,将T复合体定向至核孔,而VirE2则作为一种促进因子,保证很长的T复合体在进入核孔时不受干扰。在T-DNA转移过程中,VirD2具有火车头的作用,牵制T复合体以5端到3端的方向向核迁移,而VirE2则只助推器的角色,帮助未折叠的长形T复合物不被打断,并方便其向核运动。已知VirE2-ssDNA可以抗拒内切酶的作用,如核酸外切酶VII
19、对VirE2-ssDNA降解能力将相当于对ssDNA的6%,对S1核酸酶的效果也相似。4、细菌染色体上与T-DNA转移有关的基因目前已知农杆菌染色体上有10个基因与T-DNA转移有关,它们主要涉及细菌与植物细胞的接触和细菌向植物伤口的趋化性。chvE编码一个葡萄糖和半乳糖结合蛋白,主要结合组成植物细胞壁的单糖;可能由于识别植物受伤产生的糖单体,导致细菌向植物伤口的趋化性;在低pH值、磷酸饥饿条件下启动VirG表达。chvD编码一种细菌ATP结合蛋白,在低pH值、磷酸饥饿条件下诱导VirG蛋白含量升高,然后VirA接受AS信号,刺激VirG转化成活性形式,启动其他VirG 基因表达。chvA 、
20、chvB、 chvC与环状a-1,2-葡聚糖的合成和运输有关; chvB产物催化合成葡聚糖, chvA产物将多糖从胞质运到胞外,影响农杆菌对植物细胞的附着能力。pscA和Exoc与多糖的合成有关,并影响农杆菌对植物细胞的附着能力。四、农杆菌Ti质粒的改造及载体构建1、野生型Ti质粒直接作为基因工程载体的障碍:(1)分子量大,160240Kb;(2)有各种限制性内切酶的多个切点;(3)T-DNA区中含有许多编码基因与基因转移无关,如致瘤基因,其存在还会导致植物体丧失形态发生能力;(4)Ti质粒不能在大肠杆菌中复制。2、Ti质粒构建的几个重要因素(1)右边界序列;(2)完整的Vir基因群;(3)有
21、独特的酶切点;(4)有在植物中可表达的选择性基因;(5)有在细菌中可表达的选择性基因;(6)章鱼碱型农杆菌品系需要独特的增强子。3、载体构建先将T-DNA片段克隆到大肠杆菌质粒中,并插入外源基因,最后通过三亲交配或接合转移把外源基因引入农杆菌Ti质粒上。Ti质粒的载体系统分两类:一元载体和双元载体例:双元载体的构建双元载体系统由两个分别含T-DNA和Vir区的相容质粒构成。(1)构建原理Ti质粒上的Vir基因可以反式激活T-DNA的转移,T-DNA和Vir区处于不同的Ti质粒上同样能起到转移T-DNA的作用。双元载体含有广泛寄主范围质粒的复制起点(oriv),从而代替了在共整合载体中用以重组的
22、同源区,它们能在任何农杆菌寄主里自发复制。所以寄主仅需一套完整的vir质粒就可。主要的转移区载在小重组Ti质粒上。(2)微型Ti质粒(mini-Ti plasmid)含有T-DNA边界,缺失Vir基因的质粒;含广谱质粒的复制位点OriV及选择标记基因。(3)辅助质粒含Vir区段的Ti质粒,helper Ti,是T-DNA缺失的突变型Ti(卸甲Ti),提供Vir基因功能,反式激活T-DNA的转移。LBA4404中含有pAL4404(pTiAch5的衍生质粒),野生型Ti也可做Helper Ti,有更强的毒性。五、根癌农杆菌侵染植物细胞的机理1、根癌农杆菌的生物学特性分类农杆菌属,也称土壤杆菌属和
23、根瘤菌属,是同属于根瘤科的革兰氏阴性菌。 土壤杆菌属有4 个种:根癌农杆菌、放射形农杆菌、毛根农杆菌和悬钩子农杆菌。 根癌农杆菌,根据其诱导植物细胞产生的冠瘿碱种类不同可分为三种类型即章鱼碱型、胭脂碱型和农杆碱型。 生活习性土壤杆菌属都是土壤习居菌,主要生活在曾被多种植物生活过的土壤中,好氧,但也能在低氧压的植物组织中生长,最适温2530,pH4.012.0,最适pH6.09.0。形态结构农杆菌细胞呈杆形,0.8x1.53.0m,以14根周生鞭毛运动,不形成芽孢,菌落无色,随菌龄增加,光滑的菌落逐渐变成有条纹,但也有许多菌株生成的菌落呈粗糙型。寄主范围根癌农杆菌广泛存在于双子叶植物中,根据不完
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 植物 基因工程
限制150内