2016高考数学专题复习导练测第五章高考专题突破二高考中的三角函数综合问题理新人教A版.doc
《2016高考数学专题复习导练测第五章高考专题突破二高考中的三角函数综合问题理新人教A版.doc》由会员分享,可在线阅读,更多相关《2016高考数学专题复习导练测第五章高考专题突破二高考中的三角函数综合问题理新人教A版.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高考专题突破二高考中的三角函数综合问题考点自测1已知向量(2,0),向量(2,2),向量(cos ,sin ),则向量与向量的夹角的取值范围是()A. B.C. D.答案D解析由题意,得:(2cos ,2sin ),所以点A的轨迹是圆(x2)2(y2)22,如图,当A位于使向量与圆相切时,向量与向量的夹角分别达到最大、最小值,故选D.2若函数f(x)(1tan x)cos x,0x,则f(x)的最大值为()A1 B2 C.1 D.2答案B解析依题意,得f(x)cos xsin x2sin(x),当0x时,x0.f(x)0在(,)恒成立,即4sin xa0在(,)恒成立,a(4sin x)min
2、.又y4sin x在(,)的最小值接近2,故a2.题型一三角函数的图象与性质例1已知函数f(x)sin(x)sin(x)2cos2,xR(其中0)(1)求函数f(x)的值域;(2)若函数yf(x)的图象与直线y1的两个相邻交点间的距离为,求函数yf(x)的单调增区间解(1)f(x)sin xcos xsin xcos x(cos x1)2(sin xcos x)12sin(x)1.由1sin(x)1,得32sin(x)11,所以函数f(x)的值域为3,1(2)由题设条件及三角函数图象和性质可知,yf(x)的周期为,所以,即2.所以f(x)2sin(2x)1,再由2k2x2k(kZ),解得kxk
3、(kZ)所以函数yf(x)的单调增区间为k,k(kZ)思维升华三角函数的图象与性质是高考考查的重点,通常先将三角函数化为yAsin(x)k的形式,然后将tx视为一个整体,结合ysin t的图象求解(2014四川)已知函数f(x)sin(3x)(1)求f(x)的单调递增区间;(2)若是第二象限角,f()cos()cos 2,求cos sin 的值解(1)因为函数ysin x的单调递增区间为2k,2k,kZ,由2k3x2k,kZ,得x,kZ.所以函数f(x)的单调递增区间为,kZ.(2)由已知,有sin()cos()(cos2sin2),所以sin coscos sin(cos cossin si
4、n)(cos2sin2),即sin cos (cos sin )2(sin cos )当sin cos 0时,由是第二象限角,知2k,kZ.此时,cos sin .当sin cos 0时,有(cos sin )2.由是第二象限角,知cos sin 0,此时cos sin .综上所述,cos sin 或.题型二三角函数和解三角形例2(2013重庆)在ABC中,内角A,B,C的对边分别是a,b,c,且a2b2abc2.(1)求C;(2)设cos Acos B,求tan 的值解(1)因为a2b2abc2,由余弦定理有cos C.又0C,故C.(2)由题意得.因此(tan sin Acos A)(ta
5、n sin Bcos B),tan2sin Asin Btan (sin Acos Bcos Asin B)cos Acos B,tan2sin Asin Btan sin(AB)cos Acos B.因为C,所以AB,所以sin(AB),因为cos(AB)cos Acos Bsin Asin B,即sin Asin B,解得sin Asin B.由得tan25tan 40,解得tan 1或tan 4.思维升华三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和差公式的灵活运用是解决此类问题的关键(2014重庆)在ABC中,内角A,B,C所对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 高考 数学 专题 复习 导练测 第五 突破 中的 三角函数 综合 问题 新人
限制150内