2010年高考数学一轮复习精品学案(人教版a版)排列、组合、二项式定理doc--高中数学 .doc
《2010年高考数学一轮复习精品学案(人教版a版)排列、组合、二项式定理doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2010年高考数学一轮复习精品学案(人教版a版)排列、组合、二项式定理doc--高中数学 .doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、http:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网20102010 年高考数学一轮复习精品学案(人教版年高考数学一轮复习精品学案(人教版 A A 版)版)排列、组合、二项式定理排列、组合、二项式定理一一【课标要求】【课标要求】1分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3二项式定理能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简
2、单问题.二二【命题走向】【命题走向】本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;预测 2007 年高考本部分内容一
3、定会有题目涉及,出现选择填空的可能性较大,与概率相结合的解答题出现的可能性较大.三三【要点精讲】【要点精讲】1排列、组合、二项式知识相互关系表2两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。3排列(1)排列定义,排列数(2)排列数公式:系mnA=)!(!mnn=n(n1)(nm+1);(3)全排列列:nnA=n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;http:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网4组合(1)组合的定义,排列与组合的区别;(2)组合数公式:Cnm
4、=)!(!mnmn=12)1(1)m-(n1)-n(mmn;(3)组合数的性质Cnm=Cnn-m;rnrnrnCCC11;rCnr=nCn-1r-1;Cn0+Cn1+Cnn=2n;Cn0-Cn1+(-1)nCnn=0,即 Cn0+Cn2+Cn4+=Cn1+Cn3+=2n-1;5二项式定理(1)二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+Cnkan-kbk+Cnnbn;(2)通项公式:二项式展开式中第 k+1 项的通项公式是:Tk+1=Cnkan-kbk;6二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性。求数的末位;数的整除性及求系数;简
5、单多项式的整除问题;(4)近似计算。当|x|充分小时,我们常用下列公式估计近似值:(1+x)n1+nx;(1+x)n1+nx+2)1(nnx2;(5)证明不等式。四四【典例解析】【典例解析】题型 1:计数原理例 1完成下列选择题与填空题(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种.A81B64C24D4(2)四名学生争夺三项冠军,获得冠军的可能的种数是()A81B64C24D4(3)有四位学生参加三项不同的竞赛,每位学生必须参加一项竞赛,则有不同的参赛方法有;每项竞赛只许有一位学生参加,则有不同的参赛方法有;每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参
6、赛方法有。解析:(1)完成一件事是“分步”进行还是“分类”进行,是选用基本原理的关键。将“投四封信”这件事分四步完成,每投一封信作为一步,每步都有投入三个不同信箱的三种方法,因此:N=3333=34=81,故答案选 A。本题也可以这样分类完成,四封信投入一个信箱中,有 C31种投法;四封信投入两个信箱中,有 C32(C41A22+C42C22)种投法;四封信投入三个信箱,有两封信在同一信箱中,有 C42A33种投法、,故共有 C31+C32(C41A22+C42C22)+C42A33=81(种)。故选A。(2)因学生可同时夺得 n 项冠军,故学生可重复排列,将 4 名学生看作 4 个“店”,3
7、项冠军看作“客”,每个“客”都可住进 4 家“店”中的任意一家,即每个“客”有 4 种住宿法。由分步计数原理得:N=444=64。故答案选 B。(3)学生可以选择项目,而竞赛项目对学生无条件限制,所以类似(1)可得 N=34=81http:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网(种);竞赛项目可以挑学生,而学生无选择项目的机会,每一项可以挑 4 种不同学生,共有N=43=64(种);等价于从 4 个学生中挑选 3 个学生去参加三个项目的竞赛,每人参加一项,故共有C43A33=24(种)。例 2(06 江苏卷)今有 2 个红球、3 个黄球、4 个白球,同色球不加以区分,将这 9个
8、球排成一列有种不同的方法(用数字作答).解析:本题考查排列组合的基本知识,由题意可知,因同色球不加以区分,实际上是一个组合问题,共有4239531260C C C。点评:分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法,在高中数学中,只有这两个原理,尤其是分类计数原理与分类讨论有很多相通之处,当遇到比较复杂的问题时,用分类的方法可以有效的将之化简,达到求解的目的.题型 2:排列问题例 3(1)(2009 浙江卷理)在二项式251()xx的展开式中,含4x的项的系数是()A10B10C5D5答案B解析 对于2 510 31551()()1rrrrrrrTCxC xx,对于1
9、034,2rr,则4x的项的系数是225(1)10C【点评】:此题重点考察二项展开式中指定项的系数,以及组合思想;【突破】:利用组合思想写出项,从而求出系数;(2)(2009 江西卷理)(1)naxby展开式中不含x的项的系数绝对值的和为243,不含y的项的系数绝对值的和为32,则,a b n的值可能为A2,1,5abn B2,1,6abn C1,2,6abn D1,2,5abn答案D解析5(1)2433nb,5(1)322na,则可取1,2,5abn,选 D点评:合理的应用排列的公式处理实际问题,首先应该进入排列问题的情景,想清楚我处理时应该如何去做。例 4(1)用数字 0,1,2,3,4
10、组成没有重复数字的五位数,则其中数字 1,2 相邻的偶数有个(用数字作答);(2)电视台连续播放 6 个广告,其中含 4 个不同的商业广告和 2 个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).解析:(1)可以分情况讨论:若末位数字为 0,则 1,2,为一组,且可以交换位置,http:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网3,4,各为 1 个数字,共可以组成33212A个五位数;若末位数字为 2,则 1 与它相邻,其余 3 个数字排列,且 0 不是首位数字,则有2224A个五位数;若末位数字为 4,则 1,2,为一组,且可以交换位置,3,0
11、,各为 1 个数字,且 0 不是首位数字,则有222(2)A=8个五位数,所以全部合理的五位数共有 24 个。(2)分二步:首尾必须播放公益广告的有 A22种;中间 4 个为不同的商业广告有 A44种,从而应当填 A22A4448.从而应填 48。点评:排列问题不可能解决所有问题,对于较复杂的问题都是以排列公式为辅助.题型三:组合问题例 5(2009 全国卷理)甲组有 5 名男同学,3 名女同学;乙组有 6 名男同学、2 名女同学。若从甲、乙两组中各选出 2 名同学,则选出的 4 人中恰有 1 名女同学的不同选法共有(D)(A)150 种(B)180 种(C)300 种(D)345 种解:分两
12、类(1)甲组中选出一名女生有112536225CCC种选法;(2)乙组中选出一名女生有211562120CCC种选法.故共有 345 种选法.选 D(2)将 4 个颜色互不相同的球全部放入编号为 1 和 2 的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()A10 种B20 种C36 种D52 种【解析】:(2)将 4 个颜色互不相同的球全部放入编号为 1 和 2 的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,分情况讨论:1 号盒子中放 1 个球,其余 3 个放入2 号盒子,有144C 种方法;1 号盒子中放 2 个球,其余 2 个放入 2 号
13、盒子,有246C 种方法;则不同的放球方法有 10 种,选 A。点评:计数原理是解决较为复杂的排列组合问题的基础,应用计数原理结合例 6(1)某校从 8 名教师中选派 4 名教师同时去 4 个边远地区支教(每地 1 人),其中甲和乙不同去,则不同的选派方案共有种;(2)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有()(A)150种(B)180种(C)200种(D)280种解析:(1)可以分情况讨论,甲去,则乙不去,有3464CA=480 种选法;甲不去,乙去,有3464CA=480 种选法;甲、乙都不去,有46A=360 种选法;共有 1320 种不同的选派方案;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010年高考数学一轮复习精品学案人教版a版排列、组合、二项式定理doc-高中数学 2010 年高 数学 一轮 复习 精品 人教版 排列 组合 二项式 定理 doc 高中数学
链接地址:https://www.taowenge.com/p-45002429.html
限制150内