2013年中考数学专题复习讲座 第二十讲 多边形与平行四边形.doc
《2013年中考数学专题复习讲座 第二十讲 多边形与平行四边形.doc》由会员分享,可在线阅读,更多相关《2013年中考数学专题复习讲座 第二十讲 多边形与平行四边形.doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2013年中考数学专题复习第二十讲 多边形与平行四边形【基础知识回顾】多边形:1、定义:在平面内,由若干条不在同一直线上的线段 相连组成的 图形叫做多边形,各边相等 也相等的多边形叫做正多边形 2、多边形的内外角和: n(n3)的内角和事 外角和是 正几边形的每个外角的度数是 ,每个内角的度数是 3、多边形的对角线: 多边形的对角线是连接多边形 的两个顶点的线段,从几边形的一个顶点出发有 条对角线,将多边形分成 个三角形,一个几边形共有 条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n边形共有 条对称轴,边数为 数的正多边形也是中心对称图形】二、平面图形的
2、密铺: 1、定义:用 、 完全相同的一种或几种平面图形进行拼接,彼此之间 地铺成一起,这就是平面图形的密铺,称作平面图形的 2、密铺的方法:用同一种正多边形密铺,可以用 、 或 用两正多边形密铺,组合方式有: 和 、 和 、 和 合 等几种【名师提醒:密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于 并使相等的边互相平合】三、平行四边1、定义:两组对边分别 的四边形是平行四边形,平行四边形ABCD可写成 2、平行四边形的特质:平行四边形的两组对边分别 平行四边形的两组对角分别 平行四边形的对角线 【名师提醒:1、平行四边形是 对称图形,对称中心是 过对角线交点的任一直线被一组
3、对边的线段 该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定: 用定义判定两组对边分别 的四边形是平行四边形一组对它 的四边形是平行四边形两组对角分别 的四边形是平行四边形对角线 的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形两个命题都不被保证是平行四边形】4、平行四边形的面积:计算公式 X 同底(等底)同边(等边)的平行四边形面积 【名师提醒:夹在两平行线间的平行线段 两平行线之间的距离处 】【重点考点例析】 考点一:多边形内角和、外角和公式例1 (2012南京)如图,1、2、3、4是五边形ABCDE的4个外角若A
4、=120,则1+2+3+4= 思路分析:根据题意先求出5的度数,然后根据多边形的外角和为360即可求出1+2+3+4的值解:由题意得,5=180-EAB=60,又多边形的外角和为360,1+2+3+4=360-5=300故答案为:300点评:本题考查了多边形的外角和等于360的性质以及邻补角的和等于180的性质,是基础题,比较简单对应训练1(2012广安)如图,四边形ABCD中,若去掉一个60的角得到一个五边形,则1+2= 度1240考点:多边形内角与外角专题:数形结合分析:利用四边形的内角和得到B+C+D的度数,进而让五边形的内角和减去B+C+D的度数即为所求的度数解:四边形的内角和为(4-
5、2)180=360,B+C+D=360-60=300,五边形的内角和为(5-2)180=540,1+2=540-300=240,故答案为240点评:考查多边形的内角和知识;求得B+C+D的度数是解决本题的突破点 考点二:平面图形的密铺例2 (2012贵港)如果仅用一种正多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是()A正三角形 B正四边形 C正六边形 D正八边形思路分析:分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360即可作出判断解:A、正三角形的一个内角度数为180-3603=60,是360的约数,能镶嵌平面,不符合题意;B、正四边形的一个内角度数为18
6、0-3604=90,是360的约数,能镶嵌平面,不符合题意;C、正六边形的一个内角度数为180-3606=120,是360的约数,能镶嵌平面,不符合题意;D、正八边形的一个内角度数为180-3608=135,不是360的约数,不能镶嵌平面,符合题意;故选D点评:本题考查平面密铺的问题,用到的知识点为:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360的约数;正多边形一个内角的度数=180-360边数对应训练 考点三:平行四边形的性质例3 (2012阜新)如图,四边形ABCD是平行四边形,BE平分ABC,CF平分BCD,BE、CF交于点G若使EF=14 AD,那么平行四边形ABCD应满
7、足的条件是()AABC=60 BAB:BC=1:4 CAB:BC=5:2 DAB:BC=5:8 思路分析:根据四边形ABCD是平行四边形,利用平行四边形的性质得到对边平行且相等,然后根据两直线平行内错角相等,得到AEB=EBC,再由BE平分ABC得到ABE=EBC,等量代换后根据等角对等边得到AB=AE,同理可得DC=DF,再由AB=DC得到AE=DF,根据等式的基本性质在等式两边都减去EF得到AF=DE,当EF=AD时,设EF=x,则AD=BC=4x,然后根据设出的量再表示出AF,进而根据AB=AF+EF用含x的式子表示出AB即可得到AB与BC的比值解答:解:四边形ABCD是平行四边形,AD
8、BC,AB=CD,AD=BC,AEB=EBC,又BE平分ABC,ABE=EBC,ABE=AEB,AB=AE,同理可得:DC=DF,AE=DF,AE-EF=DE-EF,即AF=DE,当EF= AD时,设EF=x,则AD=BC=4x,AF=DE=(AD-EF)=1.5x,AE=AB=AF+EF=2.5x,AB:BC=2.5:4=5:8故选D点评:此题考查了平行四边形的性质,等腰三角形的性质,角平分性的定义以及等式的基本性质,利用了等量代换的数学思想,要求学生把所学的知识融汇贯穿,灵活运用例4 (2012广安)如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=
9、AB,求证:AEFDFC思路分析:由四边形ABCD是平行四边形,利用平行四边形的性质,即可得AB=CD,ABCD,又由平行线的性质,即可得D=EAF,然后由BE=AD,AF=AB,求得AF=CD,DF=AE,继而利用SAS证得:AEFDFC证明:四边形ABCD是平行四边形,AB=CD,ABCD,D=EAF,AF=AB,BE=AD,AF=CD,AD-AF=BE-AB,即DF=AE,在AEF和DFC中,AEFDFC(SAS)点评:此题考查了平行四边形的性质与全等三角的判定此题难度不大,注意数形结合思想的应用对应训练3(2012永州)如图,平行四边形ABCD的对角线相交于点O,且ABAD,过O作OE
10、BD交BC于点E若CDE的周长为10,则平行四边形ABCD的周长为 320考点:平行四边形的性质;线段垂直平分线的性质分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得OB=OD,AB=CD,AD=BC,又由OEBD,即可得OE是BD的垂直平分线,然后根据线段垂直平分线的性质,即可得BE=DE,又由CDE的周长为10,即可求得平行四边形ABCD的周长解:四边形ABCD是平行四边形,OB=OD,AB=CD,AD=BC,OEBD,BE=DE,CDE的周长为10,即CD+DE+EC=10,平行四边形ABCD的周长为:AB+BC+CD+AD=2(BC+CD)=2(BE
11、+EC+CD)=2(DE+EC+CD)=210=20故答案为:20点评:此题考查了平行四边形的性质与线段垂直平分线的性质此题难度适中,注意掌握数形结合思想与转化思想的应用4(2012大连)如图,ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC4考点:平行四边形的性质;全等三角形的判定与性质专题:证明题分析:根据ED=BF,可得出AE=CF,结合平行线的性质,可得出AEO=CFO,FCO=EAO,继而可判定AEOCFO,即可得出结论证明:四边形ABCD是平行四边形,AD=CB,AEO=CFO,FCO=EAO,又ED=BF,AD-ED=BC-BF,即AE
12、=CF,在AEO和CFO中,AEOCFO,OA=OC点评:此题考查了平行四边形的性质,根据平行四边形的性质得出ED=BF及AEO=CFO,FCO=EAO是解答本题的关键考点四:平行四边形的判定例5 (2012资阳)如图,ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,ADE=DAC,DE=AC运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A一组对边平行,另一组对边相等的四边形是平行四边形B有一组对边平行的四边形是梯形 C一组对边相等,一组对角相等的四边形是平行四边形 D对角线相等的四边形是矩形 思路分析:已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形,根
13、据全等三角形判定方法得出B=E,AB=DE,进而得出一组对边相等,一组对角相等的四边形不是平行四边形,得出答案即可解:A一组对边平行,另一组对边相等的四边形是平行四边形,根据等腰梯形符合要求,得出故此选项错误;B有一组对边平行的四边形是梯形,若另一组对边也平行,则此四边形是平行四边形,故此选项错误;C一组对边相等,一组对角相等的四边形是平行四边形,ABC是等腰三角形,AB=AC,B=C,DE=AC,AD=AD,ADE=DAC,即,ADEDAC,E=C,B=E,AB=DE,但是四边形ABDE不是平行四边形,故一组对边相等,一组对角相等的四边形不是平行四边形,因此C符合题意,故此选项正确;D对角线
14、相等的四边形是矩形,根据等腰梯形符合要求,得出故此选项错误;故选:C点评:此题主要考查了平行四边形的判定方法以及全等三角形的判定,结合已知选项,得出已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形是解题关键例6 (2012湛江)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF求证:(1)ABECDF;(2)四边形BFDE是平行四边形思路分析:(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得A=C,AB=CD,又由AE=CF,利用SAS,即可判定ABECDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得
15、ADBC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形证明:(1)四边形ABCD是平行四边形,A=C,AB=CD,在ABE和CDF中,ABECDF(SAS);(2)四边形ABCD是平行四边形,ADBC,AD=BC,AE=CF,AD-AE=BC-CF,即DE=BF,四边形BFDE是平行四边形点评:此题考查了平行四边形的性质与判定以及全等三角形的判定此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用对应训练5(2012泰州)下列四个命题:一组对边平行且一组对角相等的四边形是平行四边形;对角线互相垂直且相等的
16、四边形是正方形;顺次连接矩形四边中点得到的四边形是菱形;正五边形既是轴对称图形又是中心对称图形其中真命题共有()A1个 B2个 C3个 D4个考点:平行四边形的判定;三角形中位线定理;菱形的判定;正方形的判定;命题与定理;轴对称图形;中心对称图形分析:根据平行四边形的各种判定方法、正方形的各种判定方法、菱形的各种判定方法以及正多边形的轴对称性逐项分析即可解:一组对边平行,且一组对角相等,则可以判定另外一组对边也平行,所以该四边形是平行四边形,故该命题正确;对角线互相垂直且相等的四边形不一定是正方形,也可以是普通的四边形(例如筝形,如图所示),故该命题错误;因为矩形的对角线相等,所以连接矩形的中
17、点后都是对角线的中位线,所以四边相等,所以是菱形,故该命题正确;正五边形只是轴对称图形不是中心对称图形,故该命题错误;所以正确的命题个数为2个,故选B点评:本题考查菱形的判定,平行四边形的判定以及正方形的判定定理以及真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理6(2012沈阳)已知,如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN(1)求证:AEMCFN;(2)求证:四边形BMDN是平行四边形考点:平行四边形的判定与性质;全等三角形的判定与性质专题:证明题分析:(1)先根据平
18、行四边形的性质可得出ADBC,DAB=BCD,再根据平行线的性质及补角的性质得出E=F,EAM=FCN,从而利用ASA可作出证明;(2)根据平行四边形的性质及(1)的结论可得BMDN,则由有一组对边平行且相等的四边形是平行四边形即可证明证明:(1)四边形ABCD是平行四边形,DAB=BCD,EAM=FCN,又ADBC,E=F在AEM与CFN中, ,AEMCFN;(2)四边形ABCD是平行四边形,AB = CD,又由(1)得AM=CN,BMDN,四边形BMDN是平行四边形点评:本题考查了平行四边形的判定及性质,全等三角形的判定,属于基础题,比较简单【聚焦山东中考】1(2012烟台)如图为2012
19、年伦敦奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为 度(不取近似值)。1考点:多边形内角与外角分析:根据正多边形的定义可得:正多边形的每一个内角都相等,则每一个外角也都相等,首先由多边形外角和为360可以计算出正七边形的每一个外角度数,再用180-一个外角的度数=一个内角的度数解:正七边形的每一个外角度数为:3607=()则内角度数是:180-()=(),故答案为:点评:此题主要考查了正多边形的内角与外角,关键是掌握正多边形的每一个内角都相等2(2012泰安)如图,在平行四边形ABCD中,过点C的直线CEAB,垂足为E,若EAD=53,则BCE的度数为()A53 B37 C47
20、D1232考点:平行四边形的性质分析:设EC于AD相交于F点,利用直角三角形两锐角互余即可求出EFA的度数,再利用平行四边形的性质:即两对边平行即可得到内错角相等和对顶角相等,即可求出BCE的度数解:在平行四边形ABCD中,过点C的直线CEAB,E=90,EAD=53,EFA=90-53=37,DFC=37四边形ABCD是平行四边形,ADBC,BCE=DFC=37故选B点评:此题主要考查了平行四边形的性质和对顶角相等,根据题意得出E=90和的对顶角相等是解决问题的关键3(2012聊城)如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么CDF与ABE不一定全等的条件是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013年中考数学专题复习讲座 第二十讲 多边形与平行四边形 2013 年中 数学 专题 复习 讲座 第二十 多边形 平行四边形
限制150内