优化方案山东专用2016年高考数学二轮复习小题专题练五理.doc
《优化方案山东专用2016年高考数学二轮复习小题专题练五理.doc》由会员分享,可在线阅读,更多相关《优化方案山东专用2016年高考数学二轮复习小题专题练五理.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小题专题练(五)解析几何(建议用时:50分钟)1已知直线l1:x2y10与直线l2:mxy0平行,则实数m的取值为()A B.C2 D22若双曲线E:1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|3,则|PF2|等于()A11 B9C5 D33已知椭圆C:1(ab0)的左、右焦点分别为F1、F2,离心率为,过F2的直线l交C于A、B两点若AF1B的周长为4,则C的方程为()A.1 B.y21C.1 D.14已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y28x的焦点重合,A,B是C的准线与E的两个交点,则|AB|()A3 B6C9 D125(2015枣庄模拟)圆C
2、1:x2y22axa290和圆C2:x2y22byb210内切,若a,bR,且ab0,则的最小值为()A18 B9C. D.6已知椭圆1(0b2)与y轴交于A,B两点,点F为该椭圆的一个焦点,则ABF面积的最大值为()A1 B2C4 D87(2015滨州模拟)若双曲线1(a0,b0)与直线yx无交点,则离心率e的取值范围为()A(1,2) B(1,2C(1,) D(1,8已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过F的直线与抛物线C交于A、B两点,如果12,那么抛物线C的方程为()Ax28y Bx24yCy28x Dy24x9(2015济宁诊断考试)已知抛物线C1:x22y的焦点为
3、F,以F为圆心的圆C2交C1于A,B两点,交C1的准线于C,D两点,若四边形ABCD是矩形,则圆C2的标准方程为()Ax24B.y24Cx22D.y2210已知点P是双曲线C:1(a0,b0)左支上一点,F1、F2是双曲线的左、右两个焦点,且PF1PF2,PF2与两条渐近线相交于M、N两点(如图),点N恰好平分线段PF2,则双曲线的离心率是()A. B.C2 D.11已知(2,0)是双曲线x21(b0)的一个焦点,则b_12已知直线l:xay10(aR)是圆C:x2y24x2y10的对称轴过点A(4,a)作圆C的一条切线,切点为B,则|AB|_13一个圆经过椭圆1的三个顶点,且圆心在x轴的正半
4、轴上,则该圆的标准方程为_14(2015青岛第一次统一检测)已知f(x)x3ax2b,如果f(x)的图象在切点P(1,2)处的切线与圆(x2)2(y4)25相切,那么3a2b_15椭圆1(ab0)的右焦点F(c,0)关于直线yx的对称点Q在椭圆上,则椭圆的离心率是_小题专题练(五)解析几何1解析:选A.因为直线l1:x2y10与直线l2:mxy0平行,所以,解得m,故选A.2解析:选B.由题意及双曲线的定义有|PF1|PF2|3|PF2|2a6.所以 |PF2|9.3解析:选A.由e得.又AF1B的周长为4,由椭圆定义,得4a4,得a,代入得c1,所以b2a2c22,故C的方程为1.4解析:选
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优化 方案 山东 专用 2016 年高 数学 二轮 复习 专题 练五理
限制150内