【步步高】2014届高三数学一轮 9.3 圆的方程课时检测 理 (含解析)北师大版.doc
《【步步高】2014届高三数学一轮 9.3 圆的方程课时检测 理 (含解析)北师大版.doc》由会员分享,可在线阅读,更多相关《【步步高】2014届高三数学一轮 9.3 圆的方程课时检测 理 (含解析)北师大版.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、9.3 圆的方程一、选择题1已知点A(1,1),B(1,1),则以线段AB为直径的圆的方程是()Ax2y22 Bx2y2Cx2y21 Dx2y24解析AB的中点坐标为:(0,0),|AB|2,圆的方程为:x2y22.答案A2以抛物线y24x的焦点为圆心,半径为2的圆的方程为()Ax2y22x10 Bx2y22x30Cx2y22x10 Dx2y22x30解析 抛物线y24x的焦点是(1,0),圆的标准方程是(x1)2y24.展开得x2y22x30.答案 B3已知圆C1:(x1)2(y1)21,圆C2与圆C1关于直线xy10对称,则圆C2的方程为()A(x2)2(y2)21B(x2)2(y2)21
2、C(x2)2(y2)21D(x2)2(y2)21解析 只要求出圆心关于直线的对称点,就是对称圆的圆心,两个圆的半径不变设圆C2的圆心为(a,b),则依题意,有解得对称圆的半径不变,为1.答案B4直线yx1上的点到圆x2y24x2y40的最近距离为()A2 B.1C21 D1解析 圆心(2,1)到已知直线的距离为d2,圆的半径为r1,故所求距离dmin21.答案 C 5点P(4,2)与圆x2y24上任一点连线的中点的轨迹方程是()A(x2)2(y1)21 B(x2)2(y1)24C(x4)2(y2)24 D(x2)2(y1)21解析设圆上任一点为Q(x0,y0),PQ的中点为M(x,y),则解得
3、因为点Q在圆x2y24上,所以xy4,即(2x4)2(2y2)24,即(x2)2(y1)21.答案A6若圆(x3)2(y5)2r2上有且只有两个点到直线4x3y20的距离等于1,则半径r的取值范围是()A(4,6) B4,6) C(4,6 D4,6解析因为圆心(3,5)到直线4x3y20的距离为5,所以当半径r4时,圆上有1个点到直线4x3y20的距离等于1,当半径r6时,圆上有3个点到直线4x3y20的距离等于1,所以圆上有且只有两个点到直线4x3y20的距离等于1时,4r6.答案A7如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是z小圆的一条固定直径的两个端点那么
4、,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()解析如图,建立直角坐标系,由题意可知,小圆O1总与大圆O相内切,且小圆O1总经过大圆的圆心O.设某时刻两圆相切于点A,此时动点M所处位置为点M,则大圆圆弧 的长与小圆圆弧 的长之差为0或2.切点A在三、四象限的差为0,在一、二象限的差为2.以切点A在第三象限为例,记直线OM与此时小圆O1的交点为M1,记AOM,则OM1O1M1OO1,故M1O1AM1OO1OM1O12.大圆圆弧 的长为l122,小圆圆弧 的长为l2212,则l1l2,即小圆的两段圆弧 与 的长相等,故点M1与点M重合即动点M在线段MO上运动,同理可知,此时点
5、N在线段OB上运动点A在其他象限类似可得,故M,N的轨迹为相互垂直的线段观察各选项知,只有选项A符合故选A.答案A二、填空题8已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为_解析线段AB的中垂线方程为2xy40,与x轴的交点(2,0)即为圆心C的坐标,所以半径为|CB|,所以圆C的方程为(x2)2y210.答案(x2)2y2109过两点A(0,4),B(4,6),且圆心在直线x2y20上的圆的标准方程是_解析 设圆心坐标为(a,b),圆半径为r,则圆方程为(xa)2(yb)2r2,圆心在直线x2y20上,a2b20,又圆过两点A(0,4),B(4,6),(0a)2(4b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 步步高 【步步高】2014届高三数学一轮 9.3 圆的方程课时检测 含解析北师大版 2014 届高三 数学 一轮 方程 课时 检测 解析 北师大
限制150内