全国各地2013年中考数学试题最新分类汇编 一元二次方程.doc
《全国各地2013年中考数学试题最新分类汇编 一元二次方程.doc》由会员分享,可在线阅读,更多相关《全国各地2013年中考数学试题最新分类汇编 一元二次方程.doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元二次方程(2013郴州)已知关于x的一元二次方程x2+bx+b1=0有两个相等的实数根,则b的值是2考点:根的判别式专题:计算题分析:根据方程有两个相等的实数根,得到根的判别式的值等于0,即可求出b的值解答:解:根据题意得:=b24(b1)=(b2)2=0,则b的值为2故答案为:2点评:此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根(2013衡阳)某药品经过两次降价,每瓶零售价由168元降为128元已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()A168(1+x)2
2、=128B168(1x)2=128C168(12x)=128D168(1x2)=128考点:由实际问题抽象出一元二次方程专题:增长率问题分析:设每次降价的百分率为x,根据降价后的价格=降价前的价格(1降价的百分率),则第一次降价后的价格是168(1x),第二次后的价格是168(1x)2,据此即可列方程求解解答:解:根据题意得:168(1x)2=128,故选B点评:此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可(2013,娄底)已知:一元二次方程.(1)求证:不论为何实数时,此方程总有两个实数根;(2)设,当二次函
3、数的图象与轴的两个交点、间的距离为4时,求此二次函数的解析式;(3)在(2)的条件下,若抛物线的顶点为,过轴上一点作轴的垂线,当为何值时,直线与的外接圆有公共点?(2013,永州)我们知道,一元二次方程没有实数根,即不存在一个实数的平方等于.若我们规定一个新数“”,使其满足(即方程有一个根为)。并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有,从而对于任意正整数,我们可以得到, 同理可得 , , .那么的值为( )A. 0 B. C. D. 方程x29x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为15考点:解一元二次方程-因式分解法;三
4、角形三边关系;等腰三角形的性质245761 专题:计算题;分类讨论分析:求出方程的解,分为两种情况:当等腰三角形的三边是3,3,6时,当等腰三角形的三边是3,6,6时,看看是否符合三角形的三边关系定理,若符合求出即可解答:解:x29x+18=0,(x3)(x6)=0,x3=0,x6=0,x1=3,x2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,此时不能组成三角形,当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=15,故答案为:15点评:本题考查了解一元二次方程和三角形的三边关系定理,等腰三角形的性质的应用,关键是确定三角形的
5、三边的长度,用的数学思想是分类讨论思想(2004广东)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元求3月份到5月份营业额的月平均增长率考点:一元二次方程的应用245761 专题:增长率问题分析:本题是平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量如果设平均增长率为x,那么结合到本题中a就是400(1+10%),即3月份的营业额,b就是633.6万元即5月份的营业额由此可求出x的值解答:解:设3月份到5月份营业额的月平均增长率为x,根据题意得,400(1+10%)(1+x)2=633.6,解
6、得,x1=0.2=20%,x2=2.2(不合题意舍去)答:3月份到5月份营业额的月平均增长率为20%点评:本题考查求平均变化率的方法若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b(当增长时中间的“”号选“+”,当降低时中间的“”号选“”)(2013,成都)一元二次方程x2+x-2=0的根的情况是( )(A)有两个不相等的实数根 (B)有两个相等的实数根 (C)只有一个实数根 (D)没有实数根(2013达州)若方程有两个不相等的实数根,则m的取值范围在数轴上表示正确的是()答案:B解析:因为方程有两个不相等的实数根,所以,3612m0,得m3,故
7、选B(2013达州)今年,6月12日为端午节。在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况。请根据小丽提供的信息,解答小华和小明提出的问题。(1)小华的问题解答:解析:(1)解:设实现每天800元利润的定价为x元/个,根据题意,得(x-2)(500-10)=800 .(2分)整理得:x2-10x+24=0.解之得:x1=4,x2=6.(3分)物价局规定,售价不能超过进价的240%,即2240%=4.8(元).x2=6不合题意,舍去,得x=4.答:应定价4元/个,才可获得800元的利润.(4分)(2)解:设每天利润为W元,定价为x元/个,得W=(x-2)(500-10)=-1
8、00x2+1000x-1600=-100(x-5)2+900.(6分)x5时W随x的增大而增大,且x4.8,当x=4.8 时,W最大,W最大=-100(4.8-5)2+900=896800 .(7分)故800元不是最大利润.当定价为4.8元/个时,每天利润最大.(8分)(2013广安)如果a3xby与a2ybx+1是同类项,则()ABCD考点:解二元一次方程组;同类项专题:计算题分析:根据同类项的定义列出方程组,然后利用代入消元法求解即可解答:解:a3xby与a2ybx+1是同类项,代入得,3x=2(x+1),解得x=2,把x=2代入得,y=2+1=3,所以,方程组的解是故选D点评:本题考查的
9、是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,根据同类项的“两同”列出方程组是解题的关键(2013广安)方程x23x+2=0的根是1或2考点:解一元二次方程-因式分解法专题:因式分解分析:由题已知的方程进行因式分解,将原式化为两式相乘的形式,再根据两式相乘值为0,这两式中至少有一式值为0,求出方程的解解答:解:因式分解得,(x1)(x2)=0,解得x1=1,x2=2点评:本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的
10、根,因式分解法是解一元二次方程的一种简便方法,要会灵活运用(2013乐山)已知一元二次方程x2-(2k+1)x+k2+k=0 .(1)求证:方程有两个不相等的实数根;(2)若ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5. 当ABC是等腰三角形时,求k的值.(2013泸州)若关于的一元二次方程有两个不相等的实数根,则实数的取值范围是A. B.且 C. 且 D. 且(2013泸州)设是方程的两个实数根,则的值为A.5 B.-5 C.1 D.-1(2013眉山)已知关于x的一元二次方程的两个实数根分别为、,则(+3)(+3)=_(2013绵阳)已知整数k5,若ABC的边长均满
11、足关于x的方程,则ABC的周长是 。(2013雅安)已知x1,x2是一元二次方程x22x=0的两根,则x1+x2的值是()A0B2C2D4考点:根与系数的关系专题:计算题分析:利用根与系数的关系即可求出两根之和解答:解:x1,x2是一元二次方程x22x=0的两根,x1+x2=2故选B点评:此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键(2013宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()Ak1Bk1Ck=1Dk0考点:根的判别式分析:判断上述方程的根的情况,只要看根的判别式=b24ac的值的符号就可以了解答:解:关于x的一元二次方程x
12、2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,=b24ac=2241k0,k1,故选:A点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根(2013宜宾)某企业五月份的利润是25万元,预计七月份的利润将达到36万元设平均月增长率为x,根据题意所列方程是25(1+x)2=36考点:由实际问题抽象出一元二次方程专题:增长率问题分析:本题为增长率问题,一般用增长后的量=增长前的量(1+增长率),如果设这个增长率为x,根据“五月份的利润是25万元,预计七月份的利润将达到36万元”
13、,即可得出方程解答:解:设这个增长率为x,根据题意可得:25(1+x)2=36,故答案为:25(1+x)2=36点评:本题为增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量2013自贡)已知关于x的方程x2(a+b)x+ab1=0,x1、x2是此方程的两个实数根,现给出三个结论:x1x2;x1x2ab;则正确结论的序号是(填上你认为正确结论的所有序号)考点:根与系数的关系;根的判别式分析:(1)可以利用方程的判别式就可以判定是否正确;(2)根据两根之积就可以判定是否正确;(3)利用根与系数的关系可以求出x12+x22的值,然后也可以判定是否正确解答:解:
14、方程x2(a+b)x+ab1=0中,=(a+b)24(ab2)=(ab)2+40,x1x2故正确;x1x2=ab1ab,故正确;x1+x2=a+b,即(x1+x2)2=(a+b)2,x12+x22=(x1+x2)22x1x2=(a+b)22ab+2=a2+b2+2a2+b2,即x12+x22a2+b2故错误;综上所述,正确的结论序号是:故答案是:点评:本题考查的是一元二次方程根的情况与判别式的关系,及一元二次方程根与系数的关系,需同学们熟练掌握(2013自贡)用配方法解关于x的一元二次方程ax2+bx+c=0考点:解一元二次方程-配方法分析:此题考查了配方法解一元二次方程,解题时要注意解题步骤
15、的准确应用,把左边配成完全平方式,右边化为常数解答:解:关于x的方程ax2+bx+c=0是一元二次方程,a0由原方程,得x2+x=,等式的两边都加上,得x2+x+=+,配方,得(x+)2=,开方,得x+=,解得x1=,x2=当b24ac0时,原方程无实数根点评:本题考查了配方法解一元二次方程用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方(2013鞍山)已知b0,关
16、于x的一元二次方程(x1)2=b的根的情况是()A有两个不相等的实数根B有两个相等的实数根C没有实数根D有两个实数根考点:解一元二次方程-直接开平方法分析:根据直接开平方法可得x1=,被开方数应该是非负数,故没有实数根解答:解:(x1)2=b中b0,没有实数根,故选:C点评:此题主要考查了解一元二次方程直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解(2013大连)若关于的方程x-x没有实数根,则实数的取值范围是( ).-4 .m-4 .m4 .M4(2013沈阳)若关于x的一元二次方程有两个不相等的实数根,则a的取值方位是 _(20
17、13铁岭)如果三角形的两边长分别是方程x28x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A5.5B5C4.5D4考点:三角形中位线定理;解一元二次方程-因式分解法;三角形三边关系分析:首先解方程求得三角形的两边长,则第三边的范围可以求得,进而得到三角形的周长l的范围,而连接这个三角形三边的中点,得到的三角形的周长一定是l的一半,从而求得中点三角形的周长的范围,从而确定解答:解:解方程x28x+15=0得:x1=3,x2=5,则第三边c的范围是:2c8则三角形的周长l的范围是:10l16,连接这个三角形三边的中点,得到的三角形的周长m的范围是:5m8故满足条件
18、的只有A故选A点评:本题考查了三角形的三边关系以及三角形的中位线的性质,理解原来的三角形与中点三角形周长之间的关系式关键(2013鄂州)下列计算正确的是()Aa4a3=a12BC(x2+1)0=0D若x2=x,则x=1考点:解一元二次方程-因式分解法;算术平方根;同底数幂的乘法;零指数幂分析:A、同底数的幂相乘,底数不变,指数相加;B、通过开平方可以求得的值;C、零指数幂:a0=1(a0);D、先移项,然后通过提取公因式对等式的左边进行因式分解,然后解方程解答:解:A、a4a3=a(4+3)=a7故本选项错误;B、=|3|=3,故本选项正确;C、x2+10,(x2+1)0=1故本选项错误;D、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国各地2013年中考数学试题最新分类汇编 一元二次方程 全国各地 2013 年中 数学试题 最新 分类 汇编 一元 二次方程
限制150内