八年级数学下学期期中复习《第16章 分式复习(第2课时)》课堂教学实录 新人教版.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《八年级数学下学期期中复习《第16章 分式复习(第2课时)》课堂教学实录 新人教版.doc》由会员分享,可在线阅读,更多相关《八年级数学下学期期中复习《第16章 分式复习(第2课时)》课堂教学实录 新人教版.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课堂实录第16章 分 式(复习课 第2课时)【课前延伸】学生独立完成学案的预习(用常规方法解分式方程)师:什么叫方程?什么叫方程的解?生1:含有未知数的等式叫做方程生2:使方程两边相等的未知数的值,叫做方程的解(板书)分式方程的定义分母里含有未知数的方程叫分式方程以前学过的方程都是整式方程评析通过提问,让学生回顾分式方程的概念,理解分式方程与整式方程的区别,为进一步复习解分式方程做好铺垫【课内探究】师:请个同学上黑板完成用常规方法解分式方程:(1); (2);(3); (4)解题过程要求清晰、完整. (教师巡视,发现学生的错误及时点拨)学生出现的问题:方程(2)右边没有乘以最简公分母,方程(4
2、)学生找出的最简公分母是(x-3)(3-x),部分学生没有检验.评析解方程时,学生出现的问题很多是比较集中的,教师要做到及时点拨,第一时间反馈给学生,学生才能及时纠正,这样课堂效率会有很大程度的提升。师:通过刚才的练习,请同学总结一下,如何求解分式方程 ?生:先把分式方程转化为整式方程师:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母如何去掉? 生(齐声):方程两边同乘最简公分母师:刚才有个别学生在解方程(2)时去分母得到的方程是x(x+2)+6(x-2)=1对吗?生:不对师(立即回应):为什么呢?生:方程右边的也要乘以最简公分母,因为这一步的依据
3、是等式的性质师(微笑):很好!为什么、2两题解出来的解是原方程的解,而3、4两题求出的解不是原方程的解呢?生:由分式方程转化为一元一次方程过程中,要去分母就必须同乘一个整式,但整式可能为零,不能满足方程变换同解的原则,就使得分式方程可能产生增根,因此解分式方程后就必须检验师(微笑):这位同学回答得很完整,分析得也很透彻!师:像这样,在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根注意:由分式方程转化为一元一次方程过程中,要去分母就必须同乘一个整式,但整式可能为零,不能满足方程变换同解的原则,就使得分式方程可能产生增根,因此解分式方程后就必须检验师:由此可以想到,只要把求得的x
4、的值代入所乘的整式(即最简公分母),若该式的值不等于零,则是原方程的根;若该式的值为零,则是原方程的增根如能保证求解过程正确,则这种验根方法比较简便教师归纳(板书):总结解分式方程的一般步骤:1在方程的两边都乘以最简公分母,约去分母,化为整式方程2解这个整式方程3把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去评析通过具体题目的求解复习,让学生在解题中回顾解分式方程的一般步骤,“从抽象到具体再到抽象”,掌握解分式方程的过程,增强学生学习的信心(板书)解例题1:解有字母的分式方程和其他方程有什么区别吗?生1:差不多,和解一般的分式方程一样,先去分母生2:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第16章 分式复习第2课时 八年级数学下学期期中复习第16章 分式复习第2课时课堂教学实录 新人教版 八年 级数 学期 期中 复习 16 分式 课时 课堂教学 实录 新人
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内