全国各地2013届高考数学 押题精选试题分类汇编11 概率 理.doc
《全国各地2013届高考数学 押题精选试题分类汇编11 概率 理.doc》由会员分享,可在线阅读,更多相关《全国各地2013届高考数学 押题精选试题分类汇编11 概率 理.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2013届全国各地高考押题数学(理科)精选试题分类汇编11:概率一、选择题 (2013届湖北省高考压轴卷 数学(理)试题)如图,设是图中边长分别为1和2的矩形区域,是内位于函数图象下方的区域 (阴影部分),从内随机取一个点,则点取自内的概率为 ()ABCD【答案】C 【解析】:将与图象交点记为,则,阴影部分的面积,而的面积为,所求概率.故选C (2013届安徽省高考压轴卷数学理试题)投掷一枚正方体骰子(六个面上分别标有1,2,3,4,5,6),向上的面上的数字记为,又表示集合的元素个数,则的概率为()AB c.D【答案】A【解析】由知,函数和的图像有四个交点,所以的最小值,解得,所以的取值是.
2、又因为的取值可能是种,故概率是,故选()A (2013届海南省高考压轴卷理科数学)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是()ABCD【答案】答案:A 考点分析:本题考察几何概型及平面图形面积求法. 第8题图解析:令,扇形OAB为对称图形,ACBD围成面积为,围成OC为,作对称轴OD,则过C点.即为以OA为直径的半圆面积减去三角形OAC的面积,.在扇形OAD中为扇形面积减去三角形OAC面积和,扇形OAB面积, (2013届江西省高考压轴卷数学理试题)已知随机变量服从正态分布,若,则()A0.477B0.625C
3、0.954D0.977【答案】C【解析】由随机变量服从正态分布可知正态密度曲线关于轴对称,而,则,故, 故选C (2013届广东省高考压轴卷数学理试题)已知,A是曲线与围成的区域,若向区域上随机投一点P,则点P落入区域A的概率为()ABCD【答案】D 区域A面积为 二、填空题 (2013届上海市高考压轴卷数学(理)试题)已知随机变量服从正态分布,且,则等于_.【答案】0.3 【解析】,则,又分布图像关于直线对称, ,则, (2013届江苏省高考压轴卷数学试题)从集合-1,1,2,3中随机选取一个数记为m,从集合-1,1,2中随机选取一个数记为n,则方程=1表示双曲线的概率为_.【答案】 (20
4、13届上海市高考压轴卷数学(理)试题)将正整数随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是_.【答案】 【解析】将正整数随机分成两组,使得每组至少有一个数则有种,因为,所以要使两组中各数之和相,则有各组数字之和为14.则有;共8种,所以两组中各数之和相等的概率是 (2013届北京市高考压轴卷理科数学)设不等式组 表示的平面区域为.在区域内随机取一个点,则此点到直线的距离大于2的概率是_【答案】 【解析】不等式对应的区域为三角形DEF,当点D在线段BC上时,点D到直线的距离等于2,所以要使点D到直线的距离大于2,则点D应在三角形BCF中.各点的坐标为,所以 ,根据几何概型可知
5、所求概率为. 三、解答题(2013届山东省高考压轴卷理科数学)(2013日照二模)“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:男性女性合计反感10不反感8合计30已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是.()请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?()若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.【答案】【解
6、析】()男性女性合计反感10616不反感6814合计161430 由已知数据得:, 所以,没有充足的理由认为反感“中国式过马路”与性别有关 ()的可能取值为 所以的分布列为:012的数学期望为: (2013届天津市高考压轴卷理科数学)袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.(I)若从袋中一次摸出2个小球,求恰为异色球的概率;(II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数都没有超过红球的个数,记此时红球的个数为,求的分布列及数学期望E.【答案】解: ()摸出的2个小球为异色球的种数为 从8个球中摸出2个小球的种数为 故所求概率为 5 分 ()符合条件的摸法包括
7、以下三种: 一种是有1个红球,1个黑球,1个白球, 共有种 一种是有2个红球,1个其它颜色球, 共有种, 一种是所摸得的3小球均为红球,共有种不同摸法, 故符合条件的不同摸法共有种 由题意知,随机变量的取值为,.其分布列为:123 (2013届北京市高考压轴卷理科数学)本小题共14分为了参加年全省高中篮球比赛,某中学决定从四个篮球较强的班级中选出人组成男子篮球队代表所在地区参赛,队员来源人数如下表:班级高三()班高三()班高二()班高二()班人数(I)从这名队员中随机选出两名,求两人来自同一班级的概率;(II)该中学篮球队经过奋力拼搏获得冠军.若要求选出两位队员代表冠军队发言,设其中来自高三(
8、7)班的人数为,求随机变量的分布列及数学期望.【答案】解:(I)“从这18名队员中随机选出两名,两人来自于同一班级”记作事件, 则 (II)的所有可能取值为 则 的分布列为:012 (2013届江西省高考压轴卷数学理试题)现有4个人去参加春节联欢活动,该活动有甲、乙两个项目可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢.(I)求这4个人中恰好有2人去参加甲项目联欢的概率;(II)求这4个人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率;(III)用分别表示这4个人中
9、去参加甲、乙项目联欢的人数,记,求随机变量的分布列与数学期望.【答案】解:依题意,这4个人中,每个人去参加甲项目联欢的概率为,去参加乙项目联欢的概率为.设“这4个人中恰有人去参加甲项目联欢”为事件,则. ()这4个人中恰好有2人去参加甲项目联欢的概率 ()设“这4人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数”为事件, 故. 这4人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率为 (III)的所有可能取值为0,2,4. , 所以的分布列是024 (2013届海南省高考压轴卷理科数学)中华人民共和国道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车
10、”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20Q80时,为酒后驾车;当Q80时,为醉酒驾车.某市公安局交通管理部门于2012年1月的某天晚上8点至11点在市区昌隆饭店设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q140的人数计入120Q140人数之内).(1)求此次拦查中醉酒驾车的人数;(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数的分布列和数学期望.【答案】解:() (0.0032
11、+0.0043+0.0050)20=0.25,0.2560=15, 所以此次拦查中醉酒驾车的人数为15人. () 易知利用分层抽样抽取8人中含有醉酒驾车者为2人;所以x的所有可能取值为0,1,2; P(x=0)=,P(X=1)=,P(x=2)= X的分布列为012. (2013届湖北省高考压轴卷 数学(理)试题)我省某示范性高中为推进新课程改革,满足不同层次学生的要求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座(规定:各科达到预先设定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国各地2013届高考数学 押题精选试题分类汇编11 概率 全国各地 2013 高考 数学 押题 精选 试题 分类 汇编 11
限制150内