聚类分析数学建模精选文档.ppt
《聚类分析数学建模精选文档.ppt》由会员分享,可在线阅读,更多相关《聚类分析数学建模精选文档.ppt(77页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、聚类分析数学建模聚类分析数学建模本讲稿第一页,共七十七页分类l俗语说,物以类聚、人以群分。l但什么是分类的根据呢?l比如,要想把中国的县分成若干类,就有很多种分类法;l可以按照自然条件来分,l比如考虑降水、土地、日照、湿度等各方面;l也可以考虑收入、教育水准、医疗条件、基础设施等指标;l既可以用某一项来分类,也可以同时考虑多项指标来分类。本讲稿第二页,共七十七页一、聚类分析的基本概念一、聚类分析的基本概念l研究对样品或指标进行分类的一种多元统计方法,是依据研究对象的个体的特征进行分类的方法。l聚类分析把分类对象按一定规则分成若干类,这些类非事先给定的,而是根据数据特征确定的。在同一类中这些对象
2、在某种意义上趋向于彼此相似,而在不同类中趋向于不相似。l职能是建立一种能按照样品或变量的相似程度进行分类的方法。本讲稿第三页,共七十七页聚类分析l对于一个数据,人们既可以对变量(指标)进行分类(相当于对数据中的列分类),也可以对观测值(事件,样品)来分类(相当于对数据中的行分类)。l比如学生成绩数据就可以对学生按照理科或文科成绩(或者综合考虑各科成绩)分类,l当然,并不一定事先假定有多少类,完全可以按照数据本身的规律来分类。l本章要介绍的分类的方法称为聚类分析(cluster analysis)。对变量的聚类称为R型聚类,而对观测值聚类称为Q型聚类。这两种聚类在数学上是对称的,没有什么不同。本
3、讲稿第四页,共七十七页 聚类分析的聚类分析的基本思想基本思想是认为我们所研究的样本或指标(变量)之间是认为我们所研究的样本或指标(变量)之间存在着程度不同的相似性(亲疏关系)。于是根据一批样本的多个观测存在着程度不同的相似性(亲疏关系)。于是根据一批样本的多个观测指标,具体找出一些彼此之间相似程度较大的样本(或指标)聚合为一指标,具体找出一些彼此之间相似程度较大的样本(或指标)聚合为一类,把另外一些彼此之间相似程度较大的样本(或指标)又聚合为另一类,把另外一些彼此之间相似程度较大的样本(或指标)又聚合为另一类,关系密切的聚合到一个小的分类单位,关系疏远的聚合到一个大的类,关系密切的聚合到一个小
4、的分类单位,关系疏远的聚合到一个大的分类单位,直到把所有样本(或指标)都聚合完毕,把不同的类型一一分类单位,直到把所有样本(或指标)都聚合完毕,把不同的类型一一划分出来,形成一个由小到大的分类系统。最后把整个分类系统画成一划分出来,形成一个由小到大的分类系统。最后把整个分类系统画成一张谱系图,用它把所有样本(或指标)间的亲疏关系表示出来。这种方张谱系图,用它把所有样本(或指标)间的亲疏关系表示出来。这种方法是最常用的、最基本的一种,称为系统聚类分析。法是最常用的、最基本的一种,称为系统聚类分析。本讲稿第五页,共七十七页饮料数据(drink.sav)l16种饮料的热量、咖啡因、钠及价格四种变量种
5、饮料的热量、咖啡因、钠及价格四种变量 本讲稿第六页,共七十七页如何度量远近?l如如果果想想要要对对100个个学学生生进进行行分分类类,如如果果仅仅仅仅知知道道他他们们的的数数学学成成绩绩,则则只只好好按按照照数数学学成成绩绩来来分分类类;这这些些成成绩绩在在直直线线上上形成形成100个点。这样就可以把接近的点放到一类。个点。这样就可以把接近的点放到一类。l如如果果还还知知道道他他们们的的物物理理成成绩绩,这这样样数数学学和和物物理理成成绩绩就就形形成成二维平面上的二维平面上的100个点,也可以按照距离远近来分类。个点,也可以按照距离远近来分类。l三三维维或或者者更更高高维维的的情情况况也也是是
6、类类似似;只只不不过过三三维维以以上上的的图图形形无无法法直直观观地地画画出出来来而而已已。在在饮饮料料数数据据中中,每每种种饮饮料料都都有有四四个个变变量量值值。这这就就是是四四维维空空间间点点的的问问题题了。了。本讲稿第七页,共七十七页两个距离概念l按照远近程度来聚类需要明确两个概念:一个是点和点之间的距离,一个是类和类之间的距离。l点间距离有很多定义方式。最简单的是歐氏距离,还有其他的距离。l当然还有一些和距离相反但起同样作用的概念,比如相似性等,两点越相似度越大,就相当于距离越短。l由一个点组成的类是最基本的类;如果每一类都由一个点组成,那么点间的距离就是类间距离。但是如果某一类包含不
7、止一个点,那么就要确定类间距离,l类间距离是基于点间距离定义的:比如两类之间最近点之间的距离可以作为这两类之间的距离,也可以用两类中最远点之间的距离作为这两类之间的距离;当然也可以用各类的中心之间的距离来作为类间距离。在计算时,各种点间距离和类间距离的选择是通过统计软件的选项实现的。不同的选择的结果会不同,但一般不会差太多。本讲稿第八页,共七十七页二、距离二、距离用 表示第i个样本与第j个样本之间的距离。一切距离应满足以下条件:每个样本有p个指标,因此每个样本可以看成p维空间中的一个点,n个样本就组成p维空间中的n个点,这时很自然想到用距离来度量n个样本间的接近程度。本讲稿第九页,共七十七页常
8、见的距离有:常见的距离有:minkowski distance(明氏距离):(明氏距离):当当 q=1 block distance 绝对值距离绝对值距离:当当 q=2 squared euclidean distance 平方欧式距离平方欧式距离-=ptqjtitxxdq11当当q=chebychev distance 切比雪夫距离切比雪夫距离本讲稿第十页,共七十七页明氏距离在实际中应用的很多,明氏距离在实际中应用的很多,但也存在一些缺点:但也存在一些缺点:处理办法:标准化2 2、指标间的相关问题;、指标间的相关问题;1、量纲的问题;、量纲的问题;本讲稿第十一页,共七十七页Mahalanob
9、is 马氏距离改进的办法,采用马氏距离本讲稿第十二页,共七十七页相似系数相似系数l夹角余弦l相关系数本讲稿第十三页,共七十七页l 夹角余弦 两变量的夹角余弦定义为:本讲稿第十四页,共七十七页l 相关系数 两变量的相关系数定义为:本讲稿第十五页,共七十七页16 系统聚类方法系统聚类方法1、最短距离(Nearest Neighbor)x21x12x22x11本讲稿第十六页,共七十七页三、系统聚类法基本步骤1.选择样本间距离的定义及类间距离的定义;2.计算n个样本两两之间的距离,得到距离矩阵 3.构造个类,每类只含有一个样本;4.合并符合类间距离定义要求的两类为一个新类;5.计算新类与当前各类的距离
10、。若类的个数为1,则转到步骤6,否则回到步骤4;6.画出聚类图;7.决定类的个数和类。本讲稿第十七页,共七十七页系统聚类分析的方法系统聚类分析的方法l系统聚类法的聚类原则决定于样品间的距离以及类间距离的定义,类间距离的不同定义就产生了不同的系统聚类分析方法。l以下用dij表示样品X(i)和X(j)之间的距离,当样品间的亲疏关系采用相似系数Cij时,令 ;l以下用D(p,q)表示类Gp和Gq之间的距离。本讲稿第十八页,共七十七页3.重心法重心法(CENtroid method)本讲稿第十九页,共七十七页4.类平均法类平均法(AVErage method)本讲稿第二十页,共七十七页例例为了研究辽宁
11、等5省1991年城镇居民生活消费情况的分布规律,根据调查资料做类型分类,用最短距离做类间分类。数据如下:x1x2x3x4x5x6x7x8辽宁17.9039.778.4912.9419.2711.052.0413.29浙江27.6850.3711.3513.3019.2514.592.7514.87河南39.4227.938.208.1416.179.421.559.76甘肃49.1627.989.019.3215.999.101.8211.35青海510.0628.6410.5210.0516.188.391.9610.81本讲稿第二十一页,共七十七页l将每一个省区视为一个样本,先计算5个省区
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 聚类分析 数学 建模 精选 文档
限制150内