全国各地2013届高考数学 押题精选试题分类汇编9 圆锥曲线 文.doc
《全国各地2013届高考数学 押题精选试题分类汇编9 圆锥曲线 文.doc》由会员分享,可在线阅读,更多相关《全国各地2013届高考数学 押题精选试题分类汇编9 圆锥曲线 文.doc(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2013届全国各地高考押题数学(文科)精选试题分类汇编9:圆锥曲线一、选择题 (2013新课标高考压轴卷(一)文科数学)已知椭圆方程,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为()ABC2D3【答案】C【解析】由题意知双曲线的焦点在轴上.椭圆的一个焦点为,椭圆实轴上的一个顶点为,所以设双曲线方程为,则,所以双曲线的离心率为,选C (2013届四川省高考压轴卷数学文试题)已知双曲线的方程为,则离心率的范围是()ABCD【答案】B (2013届广东省高考压轴卷数学文试题)已知直线,其中成等比数列,且直线经过抛物线的焦点,则()AB0C1D4【答案】A成等比数列,直线经过抛物线的
2、焦点,由联立解得或(舍去),. (2013届福建省高考压轴卷数学文试题)角的终边经过点A,且点A在抛物线的准线上,则()ABCD【答案】B (2013届全国大纲版高考压轴卷数学文试题(一)若双曲线(m0)的焦距为8,则它的离心率为()AB2CD【答案】A (2013届新课标高考压轴卷(二)文科数学)已知双曲线的方程为,过左焦点作斜率为的直线交双曲线的右支于点P,且y轴平分线段,则双曲线的离心率为()ABCD【答案】A (2013届北京市高考压轴卷文科数学)已知抛物线的焦点F与双曲的右焦点重合,抛物线的准 线与x轴的交点为K,点A在抛物线上且,则A点的横坐标为()AB3CD4 第二部分 (非选择
3、题 共110分)【答案】B【解析】抛物线的焦点为,准线为.双曲线的右焦点为,所以,即,即.过F做准线的垂线,垂足为M,则,即,设,则代入,解得.选B (2013届江西省高考压轴卷数学文试题)已知有相同两焦点F1、F2的椭圆+ y2=1和双曲线- y2=1,P是它们的一个交点,则F1PF2的面积是()A2B3C1D4【答案】C (2013届湖北省高考压轴卷 数学(文)试题)已知双曲线右支上的一点到左焦点与到右焦点的距离之差为8,且到两渐近线的距离之积为,则双曲线的离心率为 【答案】 【解析】:因为双曲线右支上的一点到左焦点的距离与到右焦点的距离之差为8,所以,又因为点到两条渐近线的距离之积为,双
4、曲线的两渐近线方程分别为和,所以根据距离公式得,所以,即,又因为,所以,离心率.故选. (2013届安徽省高考压轴卷数学文试题)设是双曲线是上下焦点,若在双曲线的上支上,存在点满足,且到直线的距离等于实轴长,则该双曲线的离心率是()ABCD【答案】B【解析】 过作与点,因为 所以即解得即,选B (2013新课标高考压轴卷(一)文科数学)若m是2和8的等比中项,则圆锥曲线的离心率是()ABC或D【答案】C 【解析】因为是2和8的等比中项,所以,所以,当时,圆锥曲线为椭圆,离心率为,当时,圆锥曲线为双曲线,离心率为,所以综上选C (2013届湖南省高考压轴卷数学(文)试题)过抛物线y2 =2px(
5、p0)的焦点F且倾斜角为60o的直l与抛物线在第一、四象限分别交于()AB两点,则()A5B4C3D2【答案】C (2013届海南省高考压轴卷文科数学)设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是()A(0,2)B0,2C(2,+)D2,+)【答案】答案:C 考点:抛物线的简单性质. 分析:由条件|FM|4,由抛物线的定义|FM|可由y0表达,由此可求y0的取值范围 解答:解:由条件|FM|4,由抛物线的定义|FM|=y0+24,所以y02 (13)=1 (14)16(15)mb0), 因为离心率为,
6、所以=,解得=,即a2=2b2. 又ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|BF2|+|AF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=2a+2a=4a,所以4a=16,a=4,所以b=2,所以椭圆方程为+=1. (2013届湖南省高考压轴卷数学(文)试题)已知双曲线C:与抛物线y2=8x有公共的焦点F,它们在第一象限内的交点为M.若双曲线C的离心率为2,则|MF|=_.【答案】 5 (2013届海南省高考压轴卷文科数学)已知双曲线和椭圆有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为_【答案】考点:圆锥曲线的综合;椭圆的
7、简单性质. 分析:先利用双曲线和椭圆有相同的焦点求出c=,再利用双曲线的离心率是椭圆离心率的两倍,求出a=2,即可求双曲线的方程. 解答:解:由题得,双曲线的焦点坐标为(,0),(,0),c=: 且双曲线的离心率为2=a=2.b2=c2a2=3, 双曲线的方程为=1. 故答案为:=1. (2013届陕西省高考压轴卷数学(文)试题)已知双曲线的一个焦点与抛线线的焦点重合,且双曲线的离心率等于,则该双曲线的方程为_.【答案】【解析】抛线线的焦点. (2013届辽宁省高考压轴卷数学文试题)已知双曲线的一条渐近线方程是,它的一个焦点与抛物线的焦点相同.则双曲线的方程为_ .【答案】 【解析】本题主要考
8、查了双曲线和抛物线的几何性质及双曲线的标准方程,属于容易题. 由渐近线方程可知 因为抛物线的焦点为(4,0),所以c=4 又 联立,解得,所以双曲线的方程为 (2013届全国大纲版高考压轴卷数学文试题(二)设椭圆 (.为常数且),和轴正方向交于点,和轴正方向交于点,为第一象限内椭圆上的点,则四边形面积在最大值为_.【答案】 (2013届新课标高考压轴卷(二)文科数学)过点M(2,0)的直线m与椭圆两点,线段的中点为P,设直线m的斜率为,直线OP的斜率为k2,则k1k2的值为_【答案】 -1/2 (2013届福建省高考压轴卷数学文试题)焦点在轴上,渐近线方程为的双曲线的离心率为_.【答案】 三、
9、解答题(2013届福建省高考压轴卷数学文试题)已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于轴(垂足为T),与抛物线交于不同的两点P.Q,且.()求点T的横坐标;()若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1. 求椭圆C的标准方程; 过点F2作直线l与椭圆C交于A,B两点,设,若的取值范围.【答案】解:()由题意得,设, 则,. 由, 得即, 又在抛物线上,则, 联立.易得 ()()设椭圆的半焦距为,由题意得, 设椭圆的标准方程为, 由,解得 从而 故椭圆的标准方程为 ()方法一: 容易验证直线的斜率不为0,设直线的方程为 将直线的方程
10、代入中得: 设,则由根与系数的关系, 可得: 因为,所以,且. 将式平方除以式,得: 由 所以 因为,所以, 又,所以, 故 , 令,因为 所以,即, 所以. 而,所以. 所以 方法二: 【D】1)当直线的斜率不存在时,即时, 又,所以 【D】2)当直线的斜率存在时,即时,设直线的方程为 由得 设,显然,则由根与系数的关系, 可得:, 因为,所以,且. 将式平方除以式得: 由得即 故,解得 因为,所以, 又, 故 令,因为 所以,即, 所以. 所以 综上所述: (2013届天津市高考压轴卷文科数学)设分别是椭圆:的左、右焦点,过倾斜角为的直线与该椭圆相交于P,两点,且.()求该椭圆的离心率;(
11、)设点满足,求该椭圆的方程.【答案】解:()直线斜率为1,设直线的方程为,其中 设,则两点坐标满足方程组 化简得, 则, 因为,所以 得,故, 所以椭圆的离心率 ()设的中点为,由(1)知 由得 即,得,从而.故椭圆的方程为 (2013届新课标高考压轴卷(二)文科数学)已知椭圆C:的离心率为,以原点O为圆心,椭圆的短半轴长 为半径的圆与直线相切()求椭圆C的标准方程()若直线L:与椭圆C相交于A、B两点,且求证:的面积为定值在椭圆上是否存在一点P,使为平行四边形,若存在,求出的取值范围,若不存在说明理由.请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题
12、号.【答案】()解:由题意得 椭圆的方程为. ()设,则A,B的坐标满足 消去y化简得 , ,得 =. ,即 即 = . O到直线的距离 = = 为定值. ()若存在平行四边形OAPB使P在椭圆上,则 设,则 由于P在椭圆上,所以 从而化简得 化简得 (1) 由知 (2) 解(1)(2)知无解 不存在P在椭圆上的平行四边形. (2013届全国大纲版高考压轴卷数学文试题(二)已知曲线上任意一点到直线的距离与它到点的距离之比是.(I)求曲线的方程;(II)设为曲线与轴负半轴的交点,问:是否存在方向向量为的直线,与曲线相交于两点,使,且与夹角为?若存在,求出值,并写出直线的方程;若不存在,请说明理由
13、.【答案】解:()设为曲线上任意一点,依题意 化简:,为椭圆,其方程为 ()设直线, 由 消去得: 设,中点, 则, (1) 依题意:,与夹角为,为等边三角形, ,即,(2) 由(2)代入(1):, 又为等边三角形,到距离, 即, 解得:即,经检验方程有解, 所以直线的方程为: (2013届重庆省高考压轴卷数学文试题)已知点,是抛物线上相异两点,且满足.()若的中垂线经过点,求直线的方程;()若的中垂线交轴于点,求的面积的最大值及此时直线的方程.【答案】解:(I)当垂直于轴时,显然不符合题意, 所以可设直线的方程为,代入方程得: 得: 直线的方程为 中点的横坐标为1,中点的坐标为 的中垂线方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国各地2013届高考数学 押题精选试题分类汇编9 圆锥曲线 全国各地 2013 高考 数学 押题 精选 试题 分类 汇编
限制150内