原子物理学简史和大事年表.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《原子物理学简史和大事年表.doc》由会员分享,可在线阅读,更多相关《原子物理学简史和大事年表.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,原子物理学简史原子物理学是研究原子的结构、运动规律及相互作用的物理学分支。它主要研究:原子的电子结构;原子光谱;原子之间或与其他物质的碰撞过程和相互作用。经过相当长时期的探索,直到20世纪初,人们对原子本身的结构和内部运动规律才有了比较清楚的认识,之后才逐步建立起近代的原子物理学。1897年前后,科学家们逐渐确定了电子的各种基本特性,并确立了电子是各种原子的共同组成部分。通常,原子是电中性的,而既然一切原子中都有带负电的电子,那么原子中就必然有带正电的物质。20世纪初,对这一问题曾提出过两种不同的假设。1904年,汤姆逊提出原子中正电荷以均匀的体密度分布在一个大小等于整个原子的球体内,而带负
2、电的电子则一粒粒地分布在球内的不同位置上,分别以某种频率振动着,从而发出电磁辐射。这个模型被形象的比喻为“果仁面包”模型,不过这个模型理论和实验结果相矛盾,很快就被放弃了。1911年卢瑟福在他所做的粒子散射实验基础上,提出原子的中心是一个重的带正电的核,与整个原子的大小相比,核很小。电子围绕核转动,类似大行星绕太阳转动。这种模型叫做原子的核模型,又称行星模型。从这个模型导出的结论同实验结果符合的很好,很快就被公认了。绕核作旋转运动的电子有加速度,根据经典的电磁理论,电子应当自动地辐射能量,使原子的能量逐渐减少、辐射的频率逐渐改变,因而发射光谱应是连续光谱。电子因能量的减少而循螺线逐渐接近原子核
3、,最后落到原子核上,所以原子应是一个不稳定的系统。但事实上原子是稳定的,原子所发射的光谱是线状的,而不是连续的。这些事实表明:从研究宏观现象中确立的经典电动力学,不适用于原子中的微观过程。这就需要进一步分析原子现象,探索原子内部运动的规律性,并建立适合于微观过程的原子理论。1913年,丹麦物理学家玻尔在卢瑟福所提出的核模型的基础上,结合原子光谱的经验规律,应用普朗克于1900年提出的量子假说,和爱因斯坦于1905年提出的光子假说,提出了原子所具有的能量形成不连续的能级,当能级发生跃迁时,原子就发射出一定频率的光的假说。玻尔的假设能够说明氢原子光谱等某些原子现象,初次成功地建立了一种氢原子结构理
4、论。建立玻尔理论是原子结构和原子光谱理论的一个重大进展,但对原子问题作进一步的研究时,却显示出这种理论的缺点,因此只能把它视为很粗略的近似理论。1924年,德布罗意提出微观粒子具有波粒二象性的假设,以后的观察证明,微观粒子具有波的性质。1926年薛定谔在此基础上建立了波动力学。同时,其他学者,如海森伯、玻恩、狄喇克等人,从另外途径建立了等效的理论,这种理论就是现在所说的量子力学,它能很好地解释原子现象20世纪的前30年,原子物理学处于物理学的前沿,发展很快,促进了量子力学的建立,开创了近代物理的新时代。由于量子力学成功地解决了当时遇到的一些原子物理问题,很多物理学家就认为原子运动的基本规律已清
5、楚,剩下来的只是一些细节问题了。由于认识上的局限性,加上研究原子核和基本粒子的吸引,除一部分波谱学家对原子能级的精细结构与超精细结构进行了深入的研究,取得了一些成就外,很多物理学家都把注意力集中到研究原子核和基本粒子上,在相当长的一段时间里,对原子物理未能进行全面深入的研究,使原子物理的发展受到了一定的影响。20世纪50年代末期,由于空间技术和空间物理学的发展,工程师和科学家们发现,只使用已有的原子物理学知识来解决空间科学和空间技术问题已是很不够了。过去,人们已精确测定了很多谱线的波长,深入研究了原子的能级,对谱线和能级的理论解释也比较准确。但是,对谱线强度、跃迁几率、碰撞截面等这些空间科学中
6、非常重要的基本知识,则了解得很少,甚至对这些物理量的某些参数只知道其量级。核试验中遇到的很多问题也都与这些知识有关。因此还必须对原子物理进行新的实验和理论探讨。原子物理学的发展对激光技术的产生和发展,作出过很大的贡献。激光出现以后,用激光技术来研究原了物理学问题,实验精度有了很大提高,因此又发现了很多新现象和新问题。射频和微波波谱学新实验方法的建立,也成为研究原子光谱线的精细结构的有力工具,推动了对原子能级精细结构的研究。因此,在20世纪50年代末以后,原子物理学的研究又重新被重视起来,成为很活跃的领域。近十多年来,对原子碰撞的研究工作进展很快,已成为原子物理学的一个主要发展方向。目前原子碰撞
7、研究的课题非常广泛,涉及光子、电子、离子、中性原子等与原子和分子碰撞的物理过程。与原子碰撞的研究相应,发展了电子束、离子束、粒子加速器、同步辐射加速器、激光器等激光源、各种能谱仪等测谱设备,以及电子、离子探测器、光电探测器和微弱信号检测方法,还广泛地应用了核物理技术和光谱技术,也发展了新的理论和计算方法。电子计算机的应用,加速了理论计算和实验数据的处理。原子光谱与激光技术的结合,使光谱分辨率达到了百万分之一赫兹以下,时间分辨率接近万亿分之一秒量级,空间分辨达到光谱波长的数量级,实现了光谱在时间、空间上的高分辨。由于激光的功率密度已达到一千万瓦每平方厘米以上,光波电场场强已经超过原子的内场场强,
8、强激光与原子相互作用产生了饱和吸收和双光子、多光子吸收等现象,发展了非线性光谱学,从而成为原了物理学中另一个十分活跃的研究方向。极端物理条件(高温、低温、高压、强场等)下和特殊条件(高激发态、高离化态)下原子的结构和物性的研究,也已成为原子物理研究中的重要领域。原子是从宏观到微观的第一个层次,是一个重要的中间环节。物质世界这些层次的结构和运动变化,是相互联系、相互影响的,对它们的研究缺一不可,很多其他重要的基础学科和技术科学的发展也都要以原子物理为基础,例如化学、生物学、空间物理、天体物理、物理力学等。激光技术、核聚变和空间技术的研究也要原子物理提供一些重要的数据,因此研究和发展原子物理这门学
9、科有着十分重要的理论和实际意义。原子物理学大事年表公元前384322年 古希腊哲学家亚里士多德提出“四元素说”。公元前384322年 古希腊哲学家亚里士多德提出“四元素说”。公元前500400年 古希腊人留基伯及其学生德谟克利特等古希腊哲学家首先提出“原子说”。 公元1661年 英国化学家波义耳首先提出了化学元素的概念。 公元1687年 英国物理学家牛顿在其著作自然哲学的数学原理中奠定了经典力学基础,引入超距作用概念。 公元1774年 法国化学家拉瓦锡提出质量守恒原理。 公元1789年 德国化学家克拉普罗特首先发现了自然界中最重的元素铀。 公元1808年 英国化学家道尔顿在他的著名著作化学哲学
10、新系统中,提出了用来解释物质结构的“原子分子学说”。 公元1811年 意大利化学家阿伏加德罗提出了理想气体分子的假设,得出了著名的阿伏加德罗常数,并在1865首次实验测定。 公元1820年 瑞典化学家白则里提出了化学原子价概念,并在1828年发表了原子量表。 公元1832年 英国物理学家法拉第提出了电解定律。 公元1854年 德国的吹玻璃工匠兼发明家盖斯勒用“盖斯勒管”进行了低气压放电实验。公元1858年 德国物理学家普吕克尔在研究低气压放电管时发现面对阴极出现绿色辉光。 公元1864年 德国物理学家汗道夫发现阴极射线。 公元1869年 俄国化学家门捷列夫和德国化学家迈耶按照原子量的顺序将元素
11、排成了“元素周期表”,又在1871年写成了化学原理一书。 公元1876年 德国物理学家戈德斯坦断定低气压放电管中的绿色辉光是由阴极射线产生的。 公元1884年 瑞典化学家阿仑尼乌斯首先提出了电离学说,认为离子就是带有电荷的原子。 公元1885年 英国物理学家克鲁克斯用实验证明阴极射线是一种具有质量带有电花的粒子流,而不是没有质量的光束。 公元1891年 爱尔兰物理学家斯托尼首先提出把电解时所假想的电单元叫做“电子”。公元前500400年 古希腊人留基伯及其学生德谟克利特等古希腊哲学家首先提出“原子说”。公元1661年 英国化学家波义耳首先提出了化学元素的概念。公元1687年 英国物理学家牛顿在
12、其著作自然哲学的数学原理中奠定了经典力学基础,引入超距作用概念。 公元1774年 法国化学家拉瓦锡提出质量守恒原理。公元1789年 德国化学家克拉普罗特首先发现了自然界中最重的元素铀。公元1808年 英国化学家道尔顿在他的著名著作化学哲学新系统中,提出了用来解释物质结构的“原子分子学说”。公元1811年 意大利化学家阿伏加德罗提出了理想气体分子的假设,得出了著名的阿伏加德罗常数,并在1865首次实验测定。公元1820年 瑞典化学家白则里提出了化学原子价概念,并在1828年发表了原子量表。公元1832年 英国物理学家法拉第提出了电解定律。 公元1854年 德国的吹玻璃工匠兼发明家盖斯勒用“盖斯勒
13、管”进行了低气压放电实验。 公元1858年 德国物理学家普吕克尔在研究低气压放电管时发现面对阴极出现绿色辉光。公元1864年 德国物理学家汗道夫发现阴极射线。公元1869年 俄国化学家门捷列夫和德国化学家迈耶按照原子量的顺序将元素排成了“元素周期表”,又在1871年写成了化学原理一书。公元1876年 德国物理学家戈德斯坦断定低气压放电管中的绿色辉光是由阴极射线产生的。公元1884年 瑞典化学家阿仑尼乌斯首先提出了电离学说,认为离子就是带有电荷的原子。 公元1885年 英国物理学家克鲁克斯用实验证明阴极射线是一种具有质量带有电花的粒子流,而不是没有质量的光束。 公元1891年 爱尔兰物理学家斯托
14、尼首先提出把电解时所假想的电单元叫做“电子”。公元1895年 德国物理学家伦琴在12月28日宣布发现了x射线(又称伦琴射线)。为此他获得了1901年度首届诺贝尔物理学奖。 法国物理学家佩兰断定阴极射线确是带负电荷的微粒流,他曾因研究物质的间断结构和测量原子体积而获得了1926年度诺贝尔物理学奖。 荷兰物理学家洛伦茨首先提出了经典电子论,他还确定了电子在电磁场中所受的力,即洛伦茨力,并预言了正常的塞曼效应。 公元1896年 法国物理学家贝克勒尔在3月1日用铀盐样品进行实验时发现了天然放射性,他也是第一个使用乳胶照相探测射线的科学家,为此同居里夫妇一起获得1903年度诺贝尔物理学奖。荷兰物理学家塞
15、曼在研究外磁场作用下的光发射时发现塞曼效应,这也是磁场对原子辐射现象的影响,为此他获得了1902年度诺贝尔物理学奖。 公元1897年英国物理学家汤姆逊在4月30日从阴极射线的研究中证实了电子的存在。由于他在研究电在气体中的传导所作得的重大贡献而获得1906年度诺贝尔物理学奖。18971914年,美国物理学家米利肯等先后多次精确测量电子的质量和电荷,1899年又测定了电子的荷质比。米利肯因对电子电荷的测定和光电效应的研究获得1923年度诺贝尔物理学奖。 公元1898年后来加入法国籍的波兰物理学家和化学家居里夫人证明含有铀元素的化合物都具有放射性,并由此发现了“镭”。法国物理学家皮埃尔居里等在自然
16、杂志11月16日这一期里第一次写下了“放射性”这一术语。居里夫妇发现了钋和镭等放射性元素,由于他们发现了天然放射性和对铀的研究,在1903年同贝克勒尔一起获诺贝尔物理学奖。另外,居里夫人因发现镭和钋获得1911年度诺贝尔化学奖,成为世界上第一位连续两次荣获科学上最高奖赏的女科学家。汤姆逊提出了第一个原子结构模型即“正电云”原子模型,俗称“西瓜模型”。 公元1899年贝克勒尔等人发现射线在磁场中发生了偏转现象。同年,新西兰出生的英国物理学家卢瑟福区分了前两种不同辐射,分别叫做“射线”和“射线”,并指出射线和阴极射线一样也是带负电的电子流.俄国物理学家列别捷夫发现了光对固体的压力并进行了测量。英国
17、物理学家汤姆逊从一些毫无放射性的普通金属受到紫外线照射时能放出电子的现象中发现了“光电效应”。 公元1900年贝克勒尔从粒子流的研究中发现它的质量和电荷都与电子相同。卢瑟福等从射线的研究中又辨认了第三种射线为“射线”。卢瑟福第一次测量了放射性的周期并引入了“放射性常数”这一术语。德国物理学家普朗克在12月17日柏林科学院物理学会的一次会议上,提出热辐射公式中的量子假设。后因为阐明光量子理论而获得1918年度诺贝尔物理学奖。 公元1901年佩兰提出了关于原子行星结构的第一个假设.公元1902年英国物理学家卢瑟福和其合作者索第开始对铀的放射性进行系统研究,发现了放射性递减的数学规律,到1907年从
18、中找到了一连串放射性元素,建立了铀放射系,为此卢瑟福获得了1908年度诺贝尔化学奖。法国化学家德马尔赛测定了镭的光谱线。开始了在X或射线辐照下液态绝缘体的导电性研究。居里夫妇发现了自然界放射性物质都有放射性现象,指出了放射能的强度,并从数吨沥青铀矿中提炼得0.1克氯化镭。 公元1904年先后加入瑞士和美国籍的德国物理学家爱因斯坦首先提出“光子”概念,光子具有动量和质量,从而确立了光的波粒二象性。公元1905年著名科学家爱因斯坦提出了“狭义相对论”以及质能关系式E=mc2;同年他又提出了光电效应定律,并在1907年发表了热容量的量子论,1916年创立广义相对论。由于他对数学物理的杰出贡献和阐明光
19、电效应规律而获得1921年度诺贝尔物理学奖。 公元1906年卢瑟福开始研究大质量亚原子粒子穿过物质时的现象,弄清了粒子的本质为以后发现原子核进行了准备。 公元1907年发现钾有放射性。开始对特征X射线进行研究。 公元1908年德国物理学家布赫雷尔用实验证实了爱因斯坦的理论。德国物理学家盖革和卢瑟福用圆柱形计数器对粒子进行测量。 公元1910年精确地测定阿伏加德罗常数。奥地利物理学家赫斯等证明“宇宙射线”来源于地球外的外层空间,他也因此和发现正电子的美国物理学家安德森一起获得1936年度诺贝尔物理学奖。 公元1911年卢瑟福把粒子大角度散射实验结果公诸于世,第一次计算了原子行星结构,确定了原子中
20、有“核”存在,从而建立了“有核原子模型”或称“行星模型”。苏格兰物理学家威尔逊发明云雾膨胀室,可用来跟踪和测量离子轨迹,他也因此和康普顿一起获得1927年度诺贝尔物理学奖。索第提出同位素概念,后被汤姆逊进一步补充。索第因研究放射性物质和同位素获得1921年度诺贝尔化学奖。英国物理学家巴克拉测得了各种原子所固有的“特征x射线”,他也因此获得1917年度诺贝尔物理学奖。 公元1912年汤姆逊建成了第一台能够分离同位素的仪器(后被称为“质谱仪”),并用来研究、分离氖的两种同位素氖-20和氖-22。德国科学家劳厄发现X射线在晶体中产生衍射,他也因此获得1914年度诺贝尔物理学奖。 公元1913年盖革制
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 原子 物理学 简史 大事 年表
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内