二元一次方程组应用题全套整合.doc
《二元一次方程组应用题全套整合.doc》由会员分享,可在线阅读,更多相关《二元一次方程组应用题全套整合.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,二元一次方程组解应用题类型题大全1、 班上有男女同学32人,女生人数的一半比男生总数少10人,若设男生人数为x人,女 生人数为y人,则可列方程组为 2、甲乙两数的和为10,其差为2,若设甲数为x,乙数为y,则可列方程组为 3、已知方程y=kx+b的两组解是则k= b= 4、某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y所满足的方程为 5、 学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,则列方程组 ,方程组的解是 6、 一根木棒长8米,分成两段,其中一段比
2、另一段长1米,求这两段的长时,设其中一段为x米,另一段为y,那么列的二元一次方程组为 7、一个矩形周长为20cm,且长比宽大2cm,则矩形的长为 cm,宽为 cm8、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()9、一只轮船顺水速度为40千米/时,逆水速度为26千米/时,则船在静水的速度是 ,水流速度是 。10、一辆汽车从A地出发,向东行驶,途中要过一座桥,使用相同的时间,如果车速是每小时60千米,就能越过桥2千米;如果车速是每小时50千米,就差3千米才能到桥,则A地与桥相距 _千米,用了 小时.(考虑问题时,桥视为一点)11、一
3、块矩形草坪的长比宽的2倍多10m,它的周长是132m,则宽和长分别为_12、一批书分给一组学生,每人6本则少6本,每人5本则多5本,该组共有_名学生,这批书共有_本13、某年级有学生246人,其中男生比女生人数的2倍少3人,求男、女生各有多少人设女生人数为x人,男生人数为y,则可列出方程组_ _14、甲、乙两条绳共长17m,如果甲绳减去,乙绳增加1m,两条绳长相等,求甲、乙两条绳各长多少米若设甲绳长x(m),乙绳长y(m),则可列方程组( ) 15、已知长江比黄河长836km,黄河长度的6倍比长江长度的5倍多1 284km设长江、黄河的长度分别为x(km),y(km),则可列出方程组 16、班
4、上有男女同学32人,女生人数的一半比男生总数少10人,若设男生人数为x人,女生人数为y人,则可列方程组为 17、甲乙两数的和为10,其差为2,若设甲数为x,乙数为y,则可列方程组为 18、已知方程y=kx+b的两组解是则k= b= 19、某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y所满足的方程为 20、学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,则列方程组 ,方程组的解是 21、一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一
5、段为x米,另一段为y,那么列的二元一次方程组为 22、一个矩形周长为20cm,且长比宽大2cm,则矩形的长为 cm,宽为 cm23、 七(2)班有任课教师6名,学生30名,其中男生占全班学生的60,若画出该班全体师生人数的扇形统计图,男生所占的扇形的圆心角为 .24、小利持250元钱到一超市购买一物品,发现每个物品上标价为2.5元/个,而在超市的促销广告上却标明:买这种物品达到100个以上(不包括100个)售价为2.4元/个,小利用手中的钱最多可买 个这种物品.25、某同学买分邮票与一元邮票共花元,已知买的一元邮票比分邮票少枚,设买分邮票枚,则依题意得到方程为()26、某种商品的进价为15元,
6、出售时标价是22.5元。由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10,那么该店最多降价_元出售该商品。27、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减20%以96元出售,很快就卖掉了。则这次生意盈亏情况是( ) A、赚6元 B、不亏不赚 C、亏4元 D、亏24元28、班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔( ) A、20支 B、14支 C、13支 D、10支29、某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价。设这种服装的成本价为
7、x元,则得到的方程是( ) A、25% B、150x25% C、x15025% D、25%x =15030、学校食堂出售两种厚度一样但大小不同的面饼,小饼直径30cm,售价30分,大饼直径40cm,售价40分。你更愿意买_饼,原因_31、某书城开展学生优惠活动,凡一次性购书不超过200元的一律九折优惠,超过200元的其中200元按九折算,超过的部分按八折算。某学生一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元钱。则该学生第二次购书实际付款_元。32、某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元的不予优惠;(2)
8、一次购买金额超过1万元,但不超过3万元的九折优惠;(3)一次购买金额超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠。某厂因库存原因,第一次在该供应商处购买原料付款7800元,第二次购买付款26100元。如果他是一次性购买同样的原料,可少付款( )A、1460元 B、1540元 C、1560元 D、2000元33、七年级足球循环赛中,规定胜一场得3分,平一场得1分,负一场得0分.现在七(一)班已赛8场,获19分.那么七(一)班现在的战况是_(说明:填胜几场,平几场,负几场”)知能点2 古代问题1古题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空”那么有_间房,有_位
9、客人2今有大、小盛米桶,5个大桶加上1个小桶,可盛3斛米;1个大桶加上5个小桶,可盛2斛米,求大、小桶各盛多少米(斛:量器名,古时用)若设大桶盛x斛米,小桶盛y斛米,则可列方程组为_3“今有鸡、兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”题目大意:在现有鸡、兔在同一个笼子里,上边数有35个头,下边数有94只脚,求鸡、兔各有多少只4希腊文集中有一些用童话形式写成的数学题比如驴和骡子驮货物这道题,就曾经被大数学家欧拉改编过,题目是这样的:驴和骡子驮着货物并排走在路上,驴不住地埋怨自己驮的货物太重,压得受不了骡子对驴说:“你发什么牢骚啊!我驮的货物比你重,假若你的货物给我一口袋,我驮上的货就比
10、你驮的重一倍,而我若给你一口袋,咱俩驮的才一样多”那么驴和骡子各驮几口袋货物?你能用方程组来解这个问题吗?规律方法一般性应用题(和差倍问题)学校的篮球比足球数的2倍少3个,篮球数与足球数的比为3:2,求这两种球队各是多少个?(和差倍问题)一次篮,排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮,排球各有多少队参赛 ?(和差倍问题) 一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?(和差倍问题)有甲、乙两种金属,甲金属的16分之一和乙金属的33分之一重量相等,而乙金属的55分之一比甲金属
11、的40分之一重7克,求两种金属各重多少克?(和差倍问题)某厂第二车间的人数比第一车间的人数的五分之四少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的四分之三.问这两个车间各有多少人?(和差倍问题)今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.(和差倍问题)小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来两个加数分别是多少? (和差倍问题、行程问题)一条公路,第一天修了全程的8分之一多5米;第二天修了全程的5分之一少14米,还
12、剩63米,求这条公路有多长?(和差倍问题、行程问题)某老翁将一根长草绳剪成前、中、后三段,中段长等于前段长加后段长,后段长等于前段长加中段长的一半,现只知道前段长5m,则该草绳的中段,后段各长多少米?(和差倍问题、金融问题)共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的115名学生积极参与,已知九一班有三分之一的学生捐了10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?(和差倍问题)某检测站要在规定时间内检测一批仪器,原计划每天检测30台这种仪器,则在规定时间内只能检测完总数的七分之三;现在每天实际检测40台,结
13、果不但比原计划提前了一天完成任务,还可以多检测25台.问规定时间是多少天?这批仪器共多少台?(和差倍问题)游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?问题:问题中的已知量是什么?待求量是什么?有哪些相等关系(即等量关系)?(行程问题)一条船顺流航行,每小时行20千米;逆流航行每小时行16千米。那么这条轮船在静水中每小时行 千米?(行程问题)甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。根据他们两人的约定,乙最快不早于1h追上甲,最
14、慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围?(行程问题)从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。甲地到乙地全程是多少?(行程问题)某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车、乙组步行。车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。已知车速度是60千米/时,步行速度是4千米/时,求A点距北山的距离。(行程问题)甲乙两人分别从甲、乙两地同时相向出发,在甲超过中点50米处甲、乙两人第一次相遇,甲、乙到达乙、
15、甲两地后立即反身往回走,结果甲、乙两人在距甲地100米处第二次相遇,求甲、乙两地的路程。(行程问题)甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.(行程问题)两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.(行程问题)某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元 一次 方程组 应用题 全套 整合
限制150内