【三维设计】2013届高考数学一轮复习 热点难点突破 不拉分系列(十四)解答立体几何中探索性问题 新人教版.doc
《【三维设计】2013届高考数学一轮复习 热点难点突破 不拉分系列(十四)解答立体几何中探索性问题 新人教版.doc》由会员分享,可在线阅读,更多相关《【三维设计】2013届高考数学一轮复习 热点难点突破 不拉分系列(十四)解答立体几何中探索性问题 新人教版.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【三维设计】2013届高考数学一轮复习 热点难点突破 不拉分系列(十四)解答立体几何中探索性问题 新人教版立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.典例(理)(2012福建高考改编)如图,在长方体ABCDA1B1C1D1中,AA1AD1,E为CD中点(1)求证:B1EAD1;(2)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由解如图,在四面体PABC中,PCAB
2、,PABC,点D,E,F,G分别是棱AP,AC,BC,PB的中点(1)求证:DE平面BCP;(2)求证:四边形DEFG为矩形;(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由解(1)证明:因为D,E分别为AP,AC的中点,所以DEPC.又因为DE平面BCP,所以DE平面BCP.(2)证明:因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DEPCFG,DGABEF.所以四边形DEFG为平行四边形又因为PCAB,所以DEDG.所以四边形DEFG为矩形(3)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点由(2)知,DFEGQ,且QDQEQFQGEG.分别取
3、PC,AB的中点M,N,连接ME,EN,NG,MG,MN.与(2)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QMQNEG,所以Q为满足条件的点题后悟道此类问题一般是先探求点的位置,多为线段的中点或某个三等分点,一般点的情形很少,然后给出符合要求的证明,注意书写格式要规范,一般有两种格式:第一种书写格式:探求出点的位置证明符合要求写出明确答案;第二种书写格式:从结论出发“要使什么成立”,“只需使什么成立”,寻求使结论成立的充分条件,类似于分析法针对训练(2012黄山模拟)如图,在底面是菱形的四棱锥PABCD中,ABC60,PAACa,PBPDa,点E在PD上,且PEED21,在棱PC上是否存在一点F,使BF平面AEC?证明你的结论证明:存在证明如下:取棱PC的中点F,线段PE的中点M,连接BD.设BDACO.连接BF,MF,BM,OE.PEED21,F为PC的中点,M是PE的中点,E是MD的中点,MFEC,BMOE.MF平面AEC,CE平面AEC,BM平面AEC,OE平面AEC,MF平面AEC,BM平面AEC.MFBMM,平面BMF平面AEC.又BF平面BMF,BF平面AEC.3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三维设计 【三维设计】2013届高考数学一轮复习 热点难点突破 不拉分系列十四解答立体几何中探索性问题 新人教版 2013 高考 数学 一轮 复习 热点 难点 突破 不拉分 系列 十四 解答 立体几何
链接地址:https://www.taowenge.com/p-45175466.html
限制150内