新课标2018届高考数学二轮复习专题能力训练13空间向量与立体几何理.doc
《新课标2018届高考数学二轮复习专题能力训练13空间向量与立体几何理.doc》由会员分享,可在线阅读,更多相关《新课标2018届高考数学二轮复习专题能力训练13空间向量与立体几何理.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题能力训练13空间向量与立体几何(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.直三棱柱ABC-A1B1C1中,ACB=90,BAC=30,BC=1,AA1=,M是CC1的中点,则异面直线AB1与A1M所成的角为() A.60B.45C.30D.902.已知平面内有一点M(1,-1,2),平面的一个法向量为n=(6,-3,6),则下列点P中,在平面内的是()A.P(2,3,3)B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)3.在正方体ABCD-A1B1C1D1中,E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为(
2、)ABCD4.(2017浙江金华联盟联考)已知斜四棱柱ABCD-A1B1C1D1的各棱长均为2,A1AD=60,BAD=90,平面A1ADD1平面ABCD,则直线BD1与平面ABCD所成的角的正切值为()ABCD5.在棱长为1的正方体ABCD-A1B1C1D1中,M是BC的中点,P,Q是正方体内部或面上的两个动点,则的最大值是()AB.1CD6.在直三棱柱A1B1C1-ABC中,BAC=,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GDEF,则线段DF的长度的取值范围为()ABCD7.如图,在四棱锥P-ABCD中,侧面PA
3、D为正三角形,底面ABCD为正方形,侧面PAD底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为()8.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别是线段CC1,BD上的点,R是直线AD上的点,满足PQ平面ABC1D1,PQRQ,且P,Q不是正方体的顶点,则|PR|的最小值是()ABCD二、填空题(本大题共6小题,每小题5分,共30分)9.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是.10.(2017浙江杭州模拟)在长方体ABCD-A
4、1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所成角的正弦值为.11.过正方形ABCD的顶点A作线段PA平面ABCD,若AB=PA,则平面ABP与平面CDP所成的二面角为.12.如图,正方体ABCD-A1B1C1D1的棱长为3,在面对角线A1D上取点M,在面对角线CD1上取点N,使得MN平面AA1C1C,当线段MN长度取到最小值时,三棱锥A1-MND1的体积为.13.已知点E,F分别是正方体ABCD-A1B1C1D1的棱AB,AA1的中点,点M,N分别是线段D1E与C1F上的点,则与平面ABCD垂直的直线MN有条.A.0B.1C.2D.无数个14.如图所示,在棱长为1
5、的正方体ABCD-A1B1C1D1中,M和N分别是A1B1和BB1的中点,那么直线AM与CN所成角的余弦值为.三、解答题(本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分15分)在边长为3的正三角形ABC中,E,F,P分别是AB,AC,BC边上的点,满足AEEB=CFFA=CPPB=12(如图(1),将AEF沿EF折起到A1EF的位置,使二面角A1-EF-B成直二面角,连接A1B,A1P(如图(2).(1)求证:A1E平面BEP;(2)求二面角B-A1P-E的余弦值.16.(本小题满分15分)如图,在四棱锥A-EFCB中,AEF为等边三角形,平面AEF
6、平面EFCB,EFBC,BC=4,EF=2a,EBC=FCB=60,O为EF的中点.(1)求证:AOBE;(2)求二面角F-AE-B的余弦值;(3)若BE平面AOC,求a的值.参考答案专题能力训练13空间向量与立体几何1.D2.A解析 逐一验证法,对于选项A,=(1,4,1),n=6-12+6=0,n,点P在平面内,同理可验证其他三个点不在平面内.3.B解析 以A为原点建立如图所示的空间直角坐标系A-xyz,设棱长为1,则A1(0,0,1),E,D(0,1,0),=(0,1,-1),.设平面A1ED的一个法向量为n1=(1,y,z),有解得n1=(1,2,2).平面ABCD的一个法向量为n2=
7、(0,0,1),cos=,即所成的锐二面角的余弦值为.4.C解析 取AD的中点O,连接OA1,易证A1O平面ABCD.建立如图所示的空间直角坐标系,得B(2,-1,0),D1(0,2,),=(-2,3,),平面ABCD的一个法向量为n=(0,0,1),设BD1与平面ABCD所成的角为,sin =,tan =.5.C解析 以A为坐标原点,分别以AD,AB,AA1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则A(0,0,0),M,所以.设=(x,y,z),由题意可知因为x+1y+0z=x+y,又-1x1,-1y1,所以-x.所以-x+y.故的最大值为.6.A解析 建立如图所示的空间直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课 2018 高考 数学 二轮 复习 专题 能力 训练 13 空间 向量 立体几何
限制150内