数二-基本知识点.doc
《数二-基本知识点.doc》由会员分享,可在线阅读,更多相关《数二-基本知识点.doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,数二基本知识点Deran Pan2017.8.11目录第一章极限4一、定理4二、重要极限4三、等价无穷小4六、积分和求极限4四、佩亚诺余项泰勒展开4第二章一元函数微分5一、函数微分5二、微分运算法则5三、基本微分公式5四、变限积分求导5五、N阶导数5六、参数方程导数5七、隐函数求导法则,幂指函数求导法则5八、反函数的一阶、二阶求导5九、单调、极值、凹凸、拐点5十、渐近线5十一、曲率6十三、泰勒定理6十四、极限与无穷小的关系6十五、附6第三章一元函数积分7一、定理7二、基本积分公式7三、基本积分方法7四、一个重要的反常积分7五、定积分的应用7第四章多元函数微分8一、如果limxx0yy0fx,
2、y存在,则fx,y在该点连续8二、求重极限方法8三、可微性讨论8四、复合函数微分8五、高阶偏导8六、隐函数求导8七、二元函数极值的充分条件8八、条件极值、拉格朗日乘数法8九、二重积分8十、柯西积分不等式10第五章常微分方程11一、一阶微分方程11二、可降阶的高阶微分方程11三、高阶常系数微分方程11第一章行列式12一、余子式&代数余子式12二、几个重要公式12三、抽象n阶方阵行列式公式12第二章矩阵12一、运算规则12二、特殊矩阵12三、可逆矩阵12四、秩13第三章向量13一、线性表出、线性相关、极大线性无关组13二、施密特正交化13三、正交矩阵13第四章线性方程组14一、克拉默法则14二、齐
3、次线性方程组、基础解系14三、非齐次线性方程组、通解结构14第五章特征值、特征向量、相似矩阵14一、特征值、特征向量14二、相似矩阵14三、实对称矩阵15四、矩阵、特征值、特征向量15五、判断A是否相似于对角15第六章二次型15一、二次型15二、标准型15三、规范型15四、化二次型为标准型,规范型15五、合同16六、惯性定理16七、实对称矩阵A、B合同的充要条件16八、正定16九、正定阵性质16后记17第一章 极限一、 定理夹逼定理,单调有界定理二、 重要极限1.limx0sinxx=12.limx01+x1x=e3.limnnn=14.limx0+xIn xk=05.limxxke-x=1三
4、、 等价无穷小当 x0时:1、 sinxx、2、 tanxx、3、 1-cosx12x24、 ex-1x5、 In 1+xx6、 1+x-1x7、 arcsinxx8、 arctanxx9、 x-1xIn10、 xm+xkxm,(km0)一、二、三、四、五、 洛必达法则六、 积分和求极限limnun=limn1ni=1nfin=01fxdx一、二、三、四、 佩亚诺余项泰勒展开1、 ex=1+x+12!x2+1n!xn+Oxn2、 sinx=x-13!x3+-1n2n+1!x2n+1+Ox2n+23、 cosx=1-12!x2+-1n2n!x2n+Ox2n+14、 In 1+x=x-x22+x3
5、3+-1n-1xnn+Oxn5、 1+xm=1+mx+mm-12!x2+mm-1m-n+1n!xn+Oxn第二章 一元函数微分一、 函数微分dy=Ax+ox=Adx+ox二、 微分运算法则1、 uv=uv2、 uv=uv+uv3、 Cu=Cu4、 uv=uv-uvv2三、 基本微分公式1、 C=02、 x=x-13、 x=xIn4、 ex=ex5、 logx=1xIna6、 cosx=-sinx7、 sinx=cosx8、 cotx=-cscx29、 tanx=secx210、 secx=secxtanx11、 cscx=-cscxcotx12、 arcsinx=11-x213、 arccos
6、x=-11-x214、 arctanx=11+x215、 arccotx=-11+x2四、 变限积分求导1x2xftdt =f2x2x-f1x1x五、 N阶导数1、 uvn=unvn2、 uvn=unv+Cn1un-1v1+Cnkun-kvk+uvn六、 参数方程导数yx=ytxtyxx=yxtxt=xtytt-xttytxt3七、 隐函数求导法则,幂指函数求导法则八、 反函数的一阶、二阶求导dxdy=1dydx=1fxy=-fxfx3九、 单调、极值、凹凸、拐点十、 渐近线水平渐近线:limxfx=b铅直渐近线:limxx0fx=b斜渐近线:limxx0fxx=a,limxx0fx-ax=b
7、十一、 曲率k=|y|1+y232R=1k=1+y232|y|十二、 定理费马定理(驻点)、罗尔定理、拉格朗日中值定理、柯西中值定理。十三、 泰勒定理fx=fx0+fx01!x-x0+fx02!x-x02+fnx0n!x-x0n+Rnx十四、 极限与无穷小的关系limxx0fx=Afx=A+x,其中limxx0x=0十五、 附麦克劳林公式:fx=f0+f01!x+f02!x2+fn0n!xn+Rnxx0=0泰勒公式:fx=fx0+fx01!x-x0+fx02!x-x02+fnx0n!x-x0n+Rnxn=0拉格朗日余项:Rnx=fn+1n+1!x-x0n+1fx=fx0+f1x-x0fx-fx
8、0=fx-x0拉格朗日中值定理n=1佩亚诺余项:Rn=Ox-x0nfx=fx0+fx01x-x0+Ox-x0fx-fx0=fx0x-x0+Ox-x0y=fx0x+Ox-x0增量与微分的关系式第三章 一元函数积分一、 定理1、 定积分存在定理2、 原函数存在定理3、 积分中值定理abfxdx=fb-a二、 基本积分公式1、 xdx=1+1x+1+C2、 1xdx=Inx+C3、 xdx=xIn+C4、 exdx=ex+C5、 sinxdx=-cosx+C6、 cosx dx=sinx+C7、 tanxdx=-Incosx+C8、 cotxdx=Insinx+C9、 secxdx=Insecx+t
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基本 知识点
限制150内