八年级数学下册 17 勾股定理复习学案(无答案)(新版)新人教版.doc
《八年级数学下册 17 勾股定理复习学案(无答案)(新版)新人教版.doc》由会员分享,可在线阅读,更多相关《八年级数学下册 17 勾股定理复习学案(无答案)(新版)新人教版.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、17 勾股定理学习目标1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形.一.复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用其知识结构如下:1.勾股定理:(1)直角三角形两直角边的_和等于_的平方就是说,对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有:.这就是勾股定理(2)勾股定理揭示了直角三角形_之间的数量关系,是解决有关线段计算问题的重要依据,勾股定
2、理的探索与验证,一般采用“构造法”通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为_.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a2+b2=c2),先构造一个直角边为a,b的直角三角形,由勾股定理证明第三边为c,进而通过“SSS”证明两个三角形全等,证明定理成立.3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示(n为正整数)的点勾股定理的逆定理是用来
3、判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想(3)三角形的三边分别为a、b、c,其中c为最大边,若,则三角形是直角三角形;若,则三角形是锐角三角形;若,则三角形是钝角三角形所以使用勾股定理的逆定理时首先要确定三角形的最大边二.课堂展示例1:如果一个直角三角形的两条边长分别是6cm和8cm,那么这个三角形的周长和面积分别是多少?例2
4、:如图,在四边形ABCD中,C=90,AB=13,BC=4,CD=3,AD=12,求证:ADBD 三.随堂练习1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A7,24,25 B3,4,5 C3,4,5 D4,7,82.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )图1A10064A1倍 B2倍 C3倍 D4倍3.三个正方形的面积如图1,正方形A的面积为( ) A 6 B 36 C 64 D 84.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为()A6cm B85cm Ccm Dcm5.在ABC中,三条边的长分别为a,b,c,
5、an21,b2n,cn2+1(n1,且n为整数),这个三角形是直角三角形吗?若是,哪个角是直角四.课堂检测1两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距( )A50cm B100cm C140cm D80cm2小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为 ( )A8cm B10cm C12cm D14cm3在ABC中,C90,若 a5,b12,则 c4等腰ABC的面积为12cm2,底上的高AD3cm,则它的周长为 5等边ABC的高为3cm,以AB为边的正
6、方形面积为6一个三角形的三边的比为51213,它的周长为60cm,则它的面积是7有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺求竹竿高与门高8如图3,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部什么位置断裂的吗?8m图3五.小结与反思勾股定理复习(2)学习目标1.掌握直角三角形的边、角之间所存在的关系,熟练应用直角三角形的勾股定理和逆定理来解决实际问题2.经历反思本单元知识结构的过程,理解和领会勾股定理和逆定理3.熟悉勾股定理的历史,进一步了解我国古代数学的
7、伟大成就,激发爱国主义思想,培养良好的学习态度重点:掌握勾股定理以及逆定理的应用难点:应用勾股定理以及逆定理考点一、已知两边求第三边1在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_2已知直角三角形的两边长为3、2,则另一条边长是_3在数轴上作出表示的点4已知,如图在ABC中,AB=BC=CA=2cm,AD是边BC上的高求 AD的长;ABC的面积考点二、利用列方程求线段的长ADEBC1如图,铁路上A,B两点相距25km,C,D为两村庄,DAAB于A,CBAB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E
8、站应建在离A站多少km处?2.如图,某学校(A点)与公路(直线L)的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D的距离相等,求商店与车站之间的距离考点三、判别一个三角形是否是直角三角形1.分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有 2.若三角形的三别是a2+b2,2ab,a2-b2(ab0),则这个三角形是 .3.如图1,在ABC中,AD是高,且,求证:ABC为直角三角形。考点四、灵活变通1.在RtABC中, a,b,c分别是三条边,B=9
9、0,已知a=6,b=10,则边长c= 682.直角三角形中,以直角边为边长的两个正方形的面积为7,8,则以斜边为边长的正方形的面积为_3.如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外 壁爬行,要从A点爬到B点,则最少要爬行 cm4.如图:带阴影部分的半圆的面积是 (取3)5.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是 6.如图:在一个高6米,长10米的楼梯表面铺地毯,则该地毯的长度至少是 米。考点五、能力提升1.已知:如图,ABC中,ABAC,AD是BC边上的高求证:AB2-AC2=BC(BD-DC)2.如图,四边形ABCD中,F为DC
10、的中点,E为BC上一点,且你能说明AFE是直角吗?3.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?三.随堂检测1已知ABC中,A= B= C,则它的三条边之比为( ) A1:1:1 B1:1 :2 C1:2 :3 D1:4:12下列各组线段中,能够组成直角三角形的是( ) A6,7,8 B5,6,7 C4,5,6 D3,4,53若等边ABC的边长为2cm,那么ABC的面积为( )A cm2 B2 cm2 C3 cm2 D4cm24.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为
11、()A6cm B85cm C3013cm D6013 cm5.有两棵树,一棵高6米,另一棵高3米,两树相距4米一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米6.一座桥横跨一江,桥长12m,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m,则小船实际行驶m7.一个三角形的三边的比为51213,它的周长为60cm,则它的面积是8.已知直角三角形一个锐角60,斜边长为1,那么此直角三角形的周长是 9.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺求竹竿高与门高OB图1BAA10.如图1所示,梯
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年级数学下册 17 勾股定理复习学案无答案新版新人教版 八年 级数 下册 勾股定理 复习 答案 新版 新人
限制150内