《基于核算法的设备故障智能诊断理论及方法探讨.docx》由会员分享,可在线阅读,更多相关《基于核算法的设备故障智能诊断理论及方法探讨.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、编号:时间:2021年x月x日书山有路勤为径,学海无涯苦作舟页码:第20页 共20页基于核算法的故障智能诊断理论及方法研究摘 要设备故障诊断与监测技术是一门正在不断发展和完善的新技术,它具有保障安全生产,防止突发事故,节约维修费用等特点,在现代化大生产中发挥着重要的作用。然而正是因为生产设备结构日趋复杂及内部关系日益密切,造成了设备运行状态监测和故障诊断的难度不断增大,迫使人们需要不断探索新的理论或方法来解决实际中所遇到的问题。自20世纪60年代以来,以Vapnik为代表的研究人员致力于统计学习理论的研究,并在此基础上创建出一类新的机器学习算法:支持向量机(Support Vector Mac
2、hine,SVM)。正是核函数在SVM的成功应用,基于核函数的学习方法(简称核算法)的研究受到重视。将核算法应用到故障诊断中有望解决其中的非线性、不精确性和不确定性等问题,为该领域的研究提供了全新且可行的研究途径。基于核算法的故障智能诊断技术,在国际上都属于一个全新的研究领域,这一方法在实际应用中还有许多问题值得进行深入的研究和探讨。本论文围绕核算法在故障智能诊断中的应用,对故障诊断中不确定信息的处理、故障诊断实时性的实现、核函数的选择和参数优化、多类故障诊断、早期故障的发现以及样本数据的压缩等几个方面进行了较为系统深入的研究,为核算法应用于故障诊断提供了理论依据,促进了故障诊断技术的发展。论
3、文的主要工作及创新之处为:针对故障诊断中两类误判造成损失不等的情况,提出一种基于几何距离的后验概率计算方法;在定义基于风险的诊断可信度的基础上,将 SVM 与贝叶斯决策理论相结合,提出一种基于最小风险的 SVM 方法;并且将该方法应用于电液伺服阀故障诊断实例,证实了该方法的可行性。针对单值 SVM 只训练单类别样本的特点,证明了径向基核函数的参数 s 0和s 时两个定理;探索了两种支持向量(边界支持向量或非边界支持向量)与目标识别率的关系,提出一种改进的“留一法”模型参数选择方法,该方法在确保分类器泛化性能的前提下,大大减少模型参数选择的时间,可针对性地确定目标识别率或非目标识别率。面对时变系
4、统的故障诊断,提出了一种基于滚动时间窗的单值 SVM 学习算法,为将单值 SVM 实用化作出了努力。提出了将单值 SVM 推广到多故障诊断的两种方法,并将之应用到基准数据库和液压泵多故障识别中,不仅解决了目前存在的 SVM 多值分类方法存在的不属于任何一类以及同时属于多类的情况,同时提高了算法的训练与决策速度。针对支持向量回归机(Support Vector Regression,SVR)模型参数选择难的问题,探究了 SVR 各参数对其性能的影响,提出了一种基于遗传算法的 SVR 参数自动优化的方法;并且通过建立 SVR 预测模型,用于实现早期故障诊断以及强混沌背景下微弱信号的检测。仿真验证,
5、该方法比径向基神经网络更具有稳健性和泛化性。最后,详细讨论了核矩阵维度缩减问题,给出了残差估计的界定理;在综合考虑选取列的独立性和残差范数大小两者关系的基础上,提出了解决核矩阵维度缩减的启发性算法贪心算法。并在此基础上,在再生核 Hilbert 空间又提出一种稀疏性回归算法。关键词:故障诊断;机器学习;支持向量机;核算法;多类故障;早期故障诊断;核矩阵Subject : Study on Theory and Methods of Intelligent Fault DiagnosisBased on Kernel AlgorithmSpecialty : Safety Technology
6、and EngineeringName : Du Jing-yi (signature)Instructor : Hou Yuan-bin (signature)AbstractThe new technique of fault diagnosis and monitoring of equipments is developing andperfecting continuously. It plays an important role in the modern duplicate productions withthe characteristics that safeguards
7、the safety production and prevents from the accidents andsaves the maintenance costs. However, the more complex structures of the facilities and itscloser inner connection increase the difficulties in diagnosing fault and monitoring therunning state of the equipments. The new theories and methods ha
8、ve to be investigated inorder to solve the problems encountered in reality. Since 1960s, researchers represented byVapnik have devoted themselves to the study on statistic learning theory. They established anew type of learning algorithm, support vector machine (SVM), based on the statistic learning
9、theory. It is the successful application of kernel function to SVM that the study on learningalgorithm based on kernel functions or kernel algorithm for simplification has attracted greatinterest. Applying the kernel algorithm to fault diagnosis will solve the non-linear, impreciseand uncertain prob
10、lems. This provides a completely new and feasible approach in the domain.Many problems are worth deeply studying and discussing about the practice of the approachfor the technique of intelligent fault diagnosis, based on kernel algorithm, is a brand new fieldin the world.This paper provides the theo
11、retical foundations for the applications of kernel algorithmto fault diagnoses though the deep and systematical study on the application of kernelalgorithm to intelligent fault diagnosis, the processing of the uncertain information in thediagnosis, the real-time realization of fault diagnoses, the c
12、hoice of kernel function andparameter optimization, multiple classes of fault diagnoses, and incipient fault diagnosis, andthe sample data compaction. Thus, it promotes the development of fault diagnoses technique.The main tasks and the innovations works are as the follows.A posterior probability al
13、gorithm is presented based on the geometric distance to solvethe problem that the miscarriage of justice in two classes causes the different loss in the faultdiagnosis, Furthermore, a SVM method on the base of the minimum risk is proposed bycombining the SVM with the Bayesian decision theory after t
14、he definition of the degree ofdiagnosis confidence. Finally, the method is validated by applying it to the practical faultdiagnosis of electro-hydraulic servo valve.Two theorems about the radial basis function on the parameter condition of s 0ors are presented and proved aiming at the characteristic
15、s that the one-class of samples istrained by the one-class SVM. This paper explores the relation between the two types ofsupport vectors (boundary support vectors and non-boundary support vectors) and therecognition rate of object; proposes an improved method of the model parameter choice of“leave o
16、ne out”; which dramatically decreases the time of model parameter choice in theprecondition of generalizing performance of classifier, so that the recognition rates of theobjects and the non-objects are determined on purpose; presents a new one-class SVMlearning algorithm based on timerolling window
17、 for the fault diagnosis of dynamic system,which will contribute to the practical application of one-class SVM. In addition, two methodsare presented though which the one class SVM is extended into multiple faults diagnoses. Ifthe methods are applied to the fiducially database and the hydraulic pres
18、sure pumprespectively, we can solve the problem existing in the method of the available SVMmulti-class classification that the object does not belong to any class or the object belongs tomore than one class simultaneously and speed up the training and decision making of thealgorithm.Aiming at the di
19、fficulty of choosing the parameters of support vector regression (SVR)model, an automatically optimized method of SVR parameter is presented based on thegenetic algorithm after the influence of each SVR parameter on SVR performance. Inaddition, incipient fault diagnosis and a method of weak informat
20、ion retrieval in thebackground of heavy chaos are created by using the predictive SVR model. Simulation showsthat the method has a more stable performance and a more general characteristic.Finally, the boundary theorem of the residual error estimation is presented afterdiscussing the problem of the
21、dimensional reductions of kernel matrices in detail. With theconsideration of datas correlation and minimal residual norm, the heuristic algorithm, whichis the greedy algorithm, is proposed for the dimensional reductions of the kernel matrices.Also, a kind of sparse regression algorithm is presented
22、 based on the greedy algorithm in thereproducing kernel Hilbert space.Key words: Fault Diagnosis Machine Learning Support Vector Machine KernelAlgorithm Multi-class Fault Incipient Fault Diagnosis Kernel Matrix1 绪论. 11.1 选题背景及意义 . 11.2 故障智能诊断中的机器学习 . 31.2.1 机器学习的发展. 31.2.2 故障诊断的智能模型. 31.3 核算法与故障诊断 .
23、 61.3.1 故障诊断存在的主要问题. 61.3.2 统计学习理论的主要内容. 71.3.3 核算法概述. 71.3.4 支持向量机理论与应用. 91.3.5 线性算法的核变换理论与应用. 121.3.6 核算法的研究内容. 131.4 本文的工作 . 141.4.1 基本框架结构. 141.4.2 主要内容. 142 基于最小风险的 SVM 方法的研究 . 172.1 引言 . 172.2 支持向量机 . 182.2.1 线性可分. 182.2.2 线性不可分. 192.2.3 非线性可分. 192.3 基于最小风险的 SVM 研究. 202.3.1 近年来的工作. 202.3.2 基于几
24、何距离的后验概率概念. 222.3.3 基于最小风险的 SVM . 242.4 仿真研究 . 272.5 实验研究 . 282.5.1 特征参数的提取. 292.5.2 SVM 对电液伺服阀故障模式的识别 . 312.6 本章小结 . 343 单值 SVM 用于故障诊断 . 353.1 引言 . 353.2 单值支持向量机 . 363.2.1 支持向量的区域描述. 363.2.2 单值 ?SVM. 373.3 模型分析及选择研究 . 403.3.1 训练集的选取及特征选择问题. 403.3.2 单值 SVM 算法的确定 . 403.3.3 核函数的选择. 413.3.4 核参数对分类性能的影响
25、. 423.4 核函数的参数确定 . 483.4.1 留一法误差估计. 483.4.2 改进的留一法误差估计. 493.4.3 实验结果及比较. 513.5 基于单值 SVM 的故障诊断. 533.6 本章小结 . 534 单值 SVM 时间滚动式学习算法的研究 . 554.1 引言 . 554.2 支持向量特点分析 . 564.2.1 KKT 条件与样本点的几何分布. 564.2.2 新增训练样本后支持向量的变化. 574.3 时间滚动式学习算法 . 584.3.1 增量式学习算法. 584.3.2 在线式学习算法. 624.4 液压泵故障预警系统的设计 . 624.4.1 特征参数的提取. 634.4.2 预警判断. 644.4.3 液压泵振动理论模型. 654.5 仿真实验 . 654.5.1 对非线性函数的逼近. 664.5.2 液压泵故障预警. 674.6 本章小结 . 695 基于单值 SVM 的多故障识别 . 715.1 引言 . 715.2 几种常用的多类 SVM 方法. 715.2.1 1 对余(1-a-r) . 715.2.2 1 对 1(1-a-1). 725.2.3 层次多值分类. 735.3 基于单值 SVM 的多值分类. 735.3.1 基于单值
限制150内