三角函数及解三角形理解练习知识题.doc
《三角函数及解三角形理解练习知识题.doc》由会员分享,可在线阅读,更多相关《三角函数及解三角形理解练习知识题.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,三角函数及解三角形练习题一解答题(共16小题)1在ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小2已知3sintan=8,且0()求cos;()求函数f(x)=6cosxcos(x)在0,上的值域3已知是函数f(x)=2cos2x+asin2x+1的一个零点()求实数a的值;()求f(x)的单调递增区间4已知函数f(x)=sin(2x+)+sin2x(1)求函数f(x)的最小正周期;(2)若函数g(x)对任意xR,有g(x)=f(x+),求函数g(x)在,上的值域5已知函数f(x)=2sinxcosx+cos2x(0)的最小正周期为(1)求的值;(2)求f(x)
2、的单调递增区间6已知函数f(x)=sin(x+)(0,)的图象关于直线x=对称,且图象上相邻两个最高点的距离为()求和的值;()若f()=(),求cos(+)的值7已知向量=(cosx,sinx),=(3,),x0,(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值8已知函数的部分图象如图所示(1)求函数f(x)的解析式;(2)在ABC中,角A,B,C的对边分别是a,b,c,若(2ac)cosB=bcosC,求的取值范围9函数f(x)=2sin(x+)(0,0)的部分图象如图所示,M为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且MBC的面积为()
3、求函数f(x)的解析式;()若f()=,求cos2的值10已知函数()求f(x)的最大值及相应的x值;()设函数,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cosMPN的值11设函数f(x)=sin(x)+sin(x),其中03,已知f()=0()求;()将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在,上的最小值12在ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+()证明:a+b=2c;()求cosC的最小值13如图,A、B、C、D为平面四
4、边形ABCD的四个内角()证明:tan=;()若A+C=180,AB=6,BC=3,CD=4,AD=5,求tan+tan+tan+tan的值14已知函数f(x)=sin2xcos2x()求f(x)的最小周期和最小值;()将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象当x时,求g(x)的值域15已知函数f(x)=sin(x)sinxcos2x(I)求f(x)的最小正周期和最大值;(II)讨论f(x)在,上的单调性16已知函数f(x)=sin(3x+)(1)求f(x)的单调递增区间;(2)若是第二象限角,f()=cos(+)cos2,求cossin的值17
5、设f(x)=2sin(x)sinx(sinxcosx)2()求f(x)的单调递增区间;()把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值18已知函数f(x)=sin(x)+cos(x),g(x)=2sin2()若是第一象限角,且f()=,求g()的值;()求使f(x)g(x)成立的x的取值集合19已知向量=(m,cos2x),=(sin2x,n),函数f(x)=,且y=f(x)的图象过点(,)和点(,2)()求m,n的值;()将y=f(x)的图象向左平移(0)个单位后得到函数y=g(x)的图象,若y=g
6、(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间三角函数及解三角形练习题参考答案与试题解析一解答题(共16小题)1(2017遂宁模拟)在ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小【分析】对已知式平方,化简,求出sin(A+B)=,确定A+B的值,利用三角形的内角和求出C的大小【解答】解:两边平方 (3sinA+4cosB)2=36 得9sin2A+16cos2B+24sinAcosB=36 (4sinB+3cosA)2=1 得16sin2B+9cos2A+24sinBcosA=1 +得:(9sin2A+9cos2A)+(16c
7、os2B+16sin2B)+24sinAcosB+24sinBcosA=37 即 9+16+24sin(A+B)=37 所以sin(A+B)=,所以A+B= 或者若A+B=,则cosA3cosA31,则4sinB+3cosA1 这是不可能的 所以A+B=因为A+B+C=180 所以 C=【点评】本题考查同角三角函数基本关系的运用,考查计算能力,是基础题2(2017浙江模拟)已知3sintan=8,且0()求cos;()求函数f(x)=6cosxcos(x)在0,上的值域【分析】()利用同角三角函数的基本关系求得cos的值()利用三角恒等变换化简函数f(x)的解析式,再利用余弦函数的定义域和值域
8、,求得函数在0,上的值域【解答】解:()3sintan=3=8,且0,cos0,为锐角=8,求得cos=,或cos=3(舍去),sin=,综上可得,cos=()函数f(x)=6cosxcos(x)=6cosx(cosx+sinx) =2cos2x+4sinxcosx=cos2x+1+2sin2x=3(cos2x+sin2x)=3cos(2x),在0,上,2x,f(x)在此区间上先增后减,当2x=0时,函数f(x)取得最大值为3,当2x=时,函数f(x)取得最小值为3cos()=3cos=1,故函数在0,上的值域为1,3【点评】本题主要考查三角恒等变换,余弦函数的定义域和值域,属于基础题3(20
9、17海淀区一模)已知是函数f(x)=2cos2x+asin2x+1的一个零点()求实数a的值;()求f(x)的单调递增区间【分析】()利用函数的零点的定义,求得实数a的值()利用三角恒等变化化简函数的解析式,再利用正弦函数的单调性求得f(x)的单调递增区间【解答】解:()由题意可知,即,即,解得()由()可得=,函数y=sinx的递增区间为,kZ由,kZ,得,kZ,所以,f(x)的单调递增区间为,kZ【点评】本题主要考查函数的零点的定义,三角恒等变换、正弦函数的单调性,属于中档题4(2017衡阳三模)已知函数f(x)=sin(2x+)+sin2x(1)求函数f(x)的最小正周期;(2)若函数g
10、(x)对任意xR,有g(x)=f(x+),求函数g(x)在,上的值域【分析】(1)利用两角和的正弦函数公式及二倍角公式化简函数f(x),再由周期公式计算得答案;(2)由已知条件求出g(x)=sin(2x+)+,当x,时,则2x+,由正弦函数的值域进一步求出函数g(x)在,上的值域【解答】解:(1)f(x)=sin(2x+)+sin2x=sin2x+cos2x+sin2x=sin2x+=sin2x+1=sin2x+,f(x)的最小正周期T=;(2)函数g(x)对任意xR,有g(x)=f(x+),g(x)=sin2(x+)+=sin(2x+)+,当x,时,则2x+,则sin(2x+)1,即g(x)
11、,解得g(x)1综上所述,函数g(x)在,上的值域为:,1【点评】本题考查了三角函数的周期性及其求法,考查了函数值域的求法,是中档题5(2016北京)已知函数f(x)=2sinxcosx+cos2x(0)的最小正周期为(1)求的值;(2)求f(x)的单调递增区间【分析】(1)利用倍角公式结合两角和的正弦化积,再由周期公式列式求得的值;(2)直接由相位在正弦函数的增区间内求解x的取值范围得f(x)的单调递增区间【解答】解:(1)f(x)=2sinxcosx+cos2x=sin2x+cos2x=由T=,得=1;(2)由(1)得,f(x)=再由,得f(x)的单调递增区间为(kZ)【点评】本题考查y=
12、Asin(x+)型函数的图象和性质,考查了两角和的正弦,属中档题6(2014重庆)已知函数f(x)=sin(x+)(0,)的图象关于直线x=对称,且图象上相邻两个最高点的距离为()求和的值;()若f()=(),求cos(+)的值【分析】()由题意可得函数f(x)的最小正周期为 求得=2再根据图象关于直线x=对称,结合可得 的值()由条件求得sin()=再根据的范围求得cos()的值,再根据cos(+)=sin=sin()+,利用两角和的正弦公式计算求得结果【解答】解:()由题意可得函数f(x)的最小正周期为,=,=2再根据图象关于直线x=对称,可得 2+=k+,kz结合可得 =()f()=()
13、,sin()=,sin()=再根据 0,cos()=,cos(+)=sin=sin()+=sin()cos+cos()sin=+=【点评】本题主要考查由函数y=Asin(x+)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题7(2017江苏)已知向量=(cosx,sinx),=(3,),x0,(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值【分析】(1)根据向量的平行即可得到tanx=,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)=(cosx,sinx),=(3,),cosx=3sinx,tan
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 三角形 理解 练习 知识
限制150内