线性代数知识点总结汇总.docx
《线性代数知识点总结汇总.docx》由会员分享,可在线阅读,更多相关《线性代数知识点总结汇总.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。(5)一行(列)乘k加到另一行(列),行列式的值不变。(6)两行成比例,行列式的值为0。(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角
2、线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n2)范德蒙德行列式数学归纳法证明8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=kn|A|(2)|AB|=|A|B|(3)|AT|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值1、2、n,则 (7)若A与B相似,则|A|=|B|(五)
3、克莱姆法则 11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。2、转置的性质(5条)(1)(A+B)T=AT+BT(2)(kA)T=kAT(3)(AB)T=BTAT(4)|
4、A|T=|A|(5)(AT)T=A(二)矩阵的逆3、逆的定义:AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1注:A可逆的充要条件是|A|04、逆的性质:(5条)(1)(kA)-1=1/kA-1 (k0)(2)(AB)-1=B-1A-1(3)|A-1|=|A|-1(4)(AT)-1=(A-1)T(5)(A-1)-1=A5、逆的求法:(1)A为抽象矩阵:由定义或性质求解(2)A为数字矩阵:(A|E)初等行变换(E|A-1)(三)矩阵的初等变换6、初等行(列)变换定义:(1)两行(列)互换;(2)一行(列)乘非零常数c(3)一行(列)乘k加到另一行(列)7、初等矩阵:单位矩阵E经过
5、一次初等变换得到的矩阵。8、初等变换与初等矩阵的性质:(1)初等行(列)变换相当于左(右)乘相应的初等矩阵(2)初等矩阵均为可逆矩阵,且Eij-1=Eij(i,j两行互换);Ei-1(c)=Ei(1/c)(第i行(列)乘c)Eij-1(k)=Eij(-k)(第i行乘k加到j)(四)矩阵的秩9、秩的定义:非零子式的最高阶数注:(1)r(A)=0意味着所有元素为0,即A=O(2)r(Ann)=n(满秩) |A|0 A可逆;r(A)n|A|=0A不可逆;(3)r(A)=r(r=1、2、n-1)r阶子式非零且所有r+1子式均为0。10、秩的性质:(7条)(1)A为mn阶矩阵,则r(A)min(m,n)
6、(2)r(AB)r(A)(B)(3)r(AB)minr(A),r(B)(4)r(kA)=r(A)(k0)(5)r(A)=r(AC)(C是一个可逆矩阵)(6)r(A)=r(AT)=r(ATA)=r(AAT)(7)设A是mn阶矩阵,B是ns矩阵,AB=O,则r(A)+r(B)n11、秩的求法:(1)A为抽象矩阵:由定义或性质求解;(2)A为数字矩阵:A初等行变换阶梯型(每行第一个非零元素下面的元素均为0),则r(A)=非零行的行数(五)伴随矩阵12、伴随矩阵的性质:(8条)(1)AA*=A*A=|A|E A*=|A|A-1(2)(kA)*=kn-1A*(3)(AB)*=B*A*(4)|A*|=|A
7、|n-1(5)(AT)*=(A*)T(6)(A-1)*=(A*)-1=A|A|-1(7)(A*)*=|A| n-2A(8)r(A*)=n (r(A)=n); r(A*)=1 (r(A)=n-1); r(A*)=0 (r(A)n-1)(六)分块矩阵13、分块矩阵的乘法:要求前列后行分法相同。14、分块矩阵求逆:3 向量(一)向量的概念及运算1、向量的内积:(,)=T=T2、长度定义: |= 3、正交定义:(,)=T=T=a1b1+a2b2+anbn=04、正交矩阵的定义:A为n阶矩阵,AAT=E A-1=AT ATA=E |A|=1(二)线性组合和线性表示5、线性表示的充要条件:非零列向量可由1
8、,2,s线性表示(1)非齐次线性方程组(1,2,s)(x1,x2,xs)T=有解。(2)r(1,2,s)=r(1,2,s,)(系数矩阵的秩等于增广矩阵的秩,用于大题第一步的检验)6、线性表示的充分条件:(了解即可)若1,2,s线性无关,1,2,s,线性相关,则可由1,2,s线性表示。7、线性表示的求法:(大题第二步)设1,2,s线性无关,可由其线性表示。(1,2,s|)初等行变换(行最简形|系数)行最简形:每行第一个非0的数为1,其余元素均为0(三)线性相关和线性无关8、线性相关注意事项:(1)线性相关=0(2)1,2线性相关1,2成比例9、线性相关的充要条件:向量组1,2,s线性相关(1)有
9、个向量可由其余向量线性表示;(2)齐次方程(1,2,s)(x1,x2,xs)T=0有非零解;(3)r(1,2,s)s 即秩小于个数 特别地,n个n维列向量1,2,n线性相关(1) r(1,2,n)n(2)|1,2,n |=0(3)(1,2,n)不可逆10、线性相关的充分条件:(1)向量组含有零向量或成比例的向量必相关(2)部分相关,则整体相关(3)高维相关,则低维相关(4)以少表多,多必相关推论:n+1个n维向量一定线性相关11、线性无关的充要条件向量组1,2,s 线性无关(1)任意向量均不能由其余向量线性表示;(2)齐次方程(1,2,s)(x1,x2,xs)T=0只有零解(3)r(1,2,s
10、)=s特别地,n个n维向量1,2,n 线性无关r(1,2,n)=n |1,2,n |0 矩阵可逆12、线性无关的充分条件:(1)整体无关,部分无关(2)低维无关,高维无关(3)正交的非零向量组线性无关(4)不同特征值的特征向量无关13、线性相关、线性无关判定(1)定义法(2)秩:若小于阶数,线性相关;若等于阶数,线性无关【专业知识补充】(1)在矩阵左边乘列满秩矩阵(秩=列数),矩阵的秩不变;在矩阵右边乘行满秩矩阵,矩阵的秩不变。(2)若n维列向量1,2,3 线性无关,1,2,3 可以由其线性表示,即(1,2,3)=(1,2,3)C,则r(1,2,3)=r(C),从而线性无关。r(1,2,3)=
11、3 r(C)=3 |C|0(四)极大线性无关组与向量组的秩14、极大线性无关组不唯一15、向量组的秩:极大无关组中向量的个数成为向量组的秩对比:矩阵的秩:非零子式的最高阶数注:向量组1,2,s 的秩与矩阵A=(1,2,s)的秩相等16、极大线性无关组的求法(1)1,2,s 为抽象的:定义法(2)1,2,s 为数字的:(1,2,s)初等行变换阶梯型矩阵则每行第一个非零的数对应的列向量构成极大无关组(五)向量空间17、基(就是极大线性无关组)变换公式:若1,2,n 与1,2,n 是n维向量空间V的两组基,则基变换公式为(1,2,n)=(1,2,n)Cnn其中,C是从基1,2,n 到1,2,n 的过
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 知识点 总结 汇总
限制150内